Three-dimensional magnetic terahertz metamaterials using a multilayer electroplating technique

K. Fan, A.C. Strikwerda, R.D. Averitt, X. Zhang

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

In the last decade, the development of metamaterials has led to exotic phenomena not shown in nature, including negative refractive index, invisibility cloaking and perfect absorption. To achieve these effects requires creating magnetically resonant subwavelength structures, since naturally occurring magnetism typically occurs at relatively low frequencies. In the far-infrared, or terahertz (THz), region of the electromagnetic spectrum, it is difficult to obtain a strong magnetic response from planar metamaterials at normal incidence. In this paper, multilayer electroplating is used to fabricate three-dimensional (3D) split-ring resonators that stand up out of plane. This enables the maximum coupling to the magnetic response at normal incidence. Characterization using THz time-domain spectroscopy indicates a strong magnetic resonance, and parameter extraction reveals a negative permeability from 1 to 1.3 THz with the minimal value of -2. The successful design, fabrication and characterization of 3D metamaterials provide opportunities to achieve different electromagnetic properties and novel devices in the THz range.
Original languageEnglish
JournalJournal of Micromechanics and Microengineering
Volume22
Issue number4
Pages (from-to)045011
Number of pages1
ISSN0960-1317
DOIs
Publication statusPublished - 2012
Externally publishedYes

Fingerprint

Dive into the research topics of 'Three-dimensional magnetic terahertz metamaterials using a multilayer electroplating technique'. Together they form a unique fingerprint.

Cite this