TY - JOUR
T1 - Thick-Walled Cylinder Theory Applied on a Conical Wedge Anchorage
AU - Bennitz, Anders
AU - Grip, Niklas
AU - Schmidt, Jacob Wittrup
PY - 2011
Y1 - 2011
N2 - Conical wedge anchorages are frequently used to anchor steel tendons in prestressing applications within the construction industry. To replace the steel tendons with non-corrosive and low weight FRPs (Fiber Reinforced Polymers), the different mechanical interactions between the steel and FRPs call for further development of the anchorage.In this paper, we derive and examine an analytical model for the internal stresses and strains within the anchorage for a prescribed presetting distance. This model is derived from the theory of thick walled cylinders under the assumptions regarding plane stress and axial symmetry. We simplify the resulting system of ten nonlinear equations and derive a method for solving them numerically. A comparison of plotted results for three different angles on the wedge’s outer surface and six different presetting distances follows.These results are also compared to both axi-symmetric and 3D FE (Finite Element) models. Analytical and FE axi-symmetric models show good correspondence, though compared to the 3D FE model, they show a clear difference in the predicted radial stress distribution on the FRP. Thus, the derived analytical model can be a useful and faster alternative to FE modeling of axi-symmetric anchorages. However, the model is of more restricted value and should be complemented by, for example, 3D FE models for other designs.
AB - Conical wedge anchorages are frequently used to anchor steel tendons in prestressing applications within the construction industry. To replace the steel tendons with non-corrosive and low weight FRPs (Fiber Reinforced Polymers), the different mechanical interactions between the steel and FRPs call for further development of the anchorage.In this paper, we derive and examine an analytical model for the internal stresses and strains within the anchorage for a prescribed presetting distance. This model is derived from the theory of thick walled cylinders under the assumptions regarding plane stress and axial symmetry. We simplify the resulting system of ten nonlinear equations and derive a method for solving them numerically. A comparison of plotted results for three different angles on the wedge’s outer surface and six different presetting distances follows.These results are also compared to both axi-symmetric and 3D FE (Finite Element) models. Analytical and FE axi-symmetric models show good correspondence, though compared to the 3D FE model, they show a clear difference in the predicted radial stress distribution on the FRP. Thus, the derived analytical model can be a useful and faster alternative to FE modeling of axi-symmetric anchorages. However, the model is of more restricted value and should be complemented by, for example, 3D FE models for other designs.
U2 - 10.1007/s11012-010-9352-6
DO - 10.1007/s11012-010-9352-6
M3 - Journal article
SN - 0025-6455
VL - 46
SP - 959
EP - 977
JO - Meccanica
JF - Meccanica
IS - 5
ER -