Thermoporoelastic effects during heat extraction from low-permeability reservoirs - DTU Orbit (04/11/2019)

Thermoporoelastic effects during heat extraction from low permeability geothermal reservoirs are investigated numerically, based on the model of a horizontal penny-shaped fracture intersected by an injection well and a production well. A coupled formulation for thermo-hydraulic (TH) processes is presented that implicitly accounts for the mechanical deformation of the poroelastic matrix. The TH model is coupled to a separate mechanical contact model (M) that solves for the fracture contact stresses due to thermoporoelastic compression. Fractures are modelled as surface discontinuities within a three-dimensional matrix. A robust contact model is utilised to resolve the contact tractions between opposing fracture surfaces. Results show that due to the very low thermal diffusivity of the rock matrix, the thermally-induced pore pressure partially dissipates even in the very low-permeability rocks that are found in EGS projects. Therefore, using the undrained thermal expansion coefficient for the matrix may overestimate the volumetric strain of the rock in low-permeability enhanced geothermal systems, whereas using a drained thermal expansion coefficient for the matrix may underestimate the volumetric strain of the rock. An effective thermal expansion coefficient can be computed from the drained and undrained values to improve the prediction for the partially-drained matrix.

General information
Publication status: Published
Organisations: Centre for oil and gas – DTU, Imperial College London
Corresponding author: Salimzadeh, S.
Contributors: Salimzadeh, S., Nick, H. M., Zimmerman, R. W.
Number of pages: 13
Pages: 546-558
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Energy
Volume: 142
ISSN (Print): 0360-5442
Ratings:
BFI (2018): BFI-level 2
Scopus rating (2018): CiteScore 6.2 SJR 2.048 SNIP 1.822
Web of Science (2018): Impact factor 5.537
Web of Science (2018): Indexed yes
Original language: English
Keywords: Coupled formulation, Enhanced geothermal systems, Low-permeability rock, Undrained thermal expansion coefficient
Electronic versions:
salimzadeh_et_al_EGY.pdf
DOIs:
10.1016/j.energy.2017.10.059
Source: FindIt
Source ID: 2392652789
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review