Thermochemical stability of zirconia-titanium nitride as mixed ionic-electronic composites

Research output: Contribution to journalJournal article – Annual report year: 2018Researchpeer-review

View graph of relations

Dense zirconia (8% molar yttria-stabilized ZrO2)-titanium nitride (TiN) composites are fabricated to obtain mixed ionic-electronic conducting ceramic systems with high degree of electronic and thermal conductivity. The composites are consolidated by spark plasma sintering (SPS), starting from pure powders of the pristine phases mixed in different ratios (TiN = 25, 50, 75 wt%). A careful optimization of the SPS conditions allows producing highly dense samples with no reaction between the phases or degradation by oxidation, thus maintaining the chemical integrity of the two phases. For all the composites, high electrical conductivity is attained. Samples exhibit metallic behavior, showing an unexpected percolation of TiN in the YSZ matrix for volume fraction ≤ 25 wt% (27 vol%). Chemical degradation and electrical properties of the compounds were monitored under oxidative (air) and inert (Ar) atmosphere at high temperatures. The oxidation kinetics of the nitride phase was inhibited by the microstructure of the composite. The electrical properties of such composites were explored at high temperature to evaluate its application in electrochemical devices. As results, it is shown that electrical transport properties of the composite can be tuned by both the relative volume fraction of phases and controlled oxidative treatments. Adjusting such parameters different electric behaviors were observed ranging from predominant electronic conductors, to temperature-independent resistivity, and semiconducting.
Original languageEnglish
JournalCeramics International
Issue number7
Pages (from-to)8440-8446
Publication statusPublished - 2018
CitationsWeb of Science® Times Cited: No match on DOI

    Research areas

  • Yttria-stabilized zirconia, TiN, Composite, Spark plasma sintering, Mixed ionic-electronic conductors
Download as:
Download as PDF
Select render style:
Download as HTML
Select render style:
Download as Word
Select render style:

ID: 145260165