Thermal performance of fish is explained by an interplay between physiology, behaviour and ecology

Philipp Neubauer*, Ken Haste Andersen

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

125 Downloads (Pure)


Increasing temperatures under climate change are thought to affect individual physiology of fish and other ectotherms through increases in metabolic demands, leading to changes in species performance with concomitant effects on species ecology. Although intuitively appealing, the driving mechanism behind thermal performance is contested; thermal performance (e.g. growth) appears correlated with metabolic scope (i.e. oxygen availability for activity) for a number of species, but a substantial number of datasets do not support oxygen limitation of long-term performance. Whether or not oxygen limitations via the metabolic scope, or a lack thereof, have major ecological consequences remains a highly contested question. size and trait-based model of energy and oxygen budgets to determine the relative influence of metabolic rates, oxygen limitation and environmental conditions on ectotherm performance. We show that oxygen limitation is not necessary to explain performance variation with temperature. Oxygen can drastically limit performance and fitness, especially at temperature extremes, but changes in thermal performance are primarily driven by the interplay between changing metabolic rates and species ecology. Furthermore, our model reveals that fitness trends with temperature can oppose trends in growth, suggesting a potential explanation for the paradox that species often occur at lower temperatures than their growth optimum. Our model provides a mechanistic underpinning that can provide general and realistic predictions about temperature impacts on the performance of fish and other ectotherms and function as a null model for contrasting temperature impacts on species with different metabolic and ecological traits.
Original languageEnglish
Article numbercoz025
JournalConservation Physiology
Issue number1
Publication statusPublished - 2019


  • Climate change
  • Metabolic rate
  • Optimal foraging
  • Thermal performance

Fingerprint Dive into the research topics of 'Thermal performance of fish is explained by an interplay between physiology, behaviour and ecology'. Together they form a unique fingerprint.

Cite this