Thermal comfort and ventilation effectiveness in an office room with radiant floor cooling and displacement ventilation

Michal Krajcik, Roberta Tomasi, Angela Simone, Bjarne W. Olesen

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

The influence of displacement ventilation and a cooled floor on indoor climate in the cooling season were experimentally studied in a room representing an office with a shaded window, occupied by two simulated employees. The aim was to investigate whether the combination of these two systems can retain the favorable air and temperature distribution patterns and high ventilation effectiveness that are typically attained by displacement ventilation, while exploiting the energy conservation advantages of a high temperature cooling system. The tests were performed under a range of boundary conditions, varying the nominal air change rate from 4.5h-1 down to 1.5h-1. Contaminant removal and mean-age-of-air measurements were performed to characterize the ventilation effectiveness and air velocity; air and operative temperature profiles were measured, together with thermal manikin equivalent temperatures, to evaluate the thermal environment. The combined system was able to achieve good ventilation effectiveness close to a heat source, so that in the occupant's breathing zone the ventilation effectiveness was significantly better than for ideal mixing, even at a nominal air change rate as low as 1.5h-1. However, for a broad range of boundary conditions, decreasing the floor temperature resulted in vertical air temperature differences of up to 6K and vertical equivalent temperature differences of up to 8K for a seated person. Thus although the maximum draught rating at ankle level was 21% at the highest nominal air change rate of 4.5h-1, even for an occupant sitting 1 meter in front of the supply diffuser, the local thermal discomfort occasioned by the excessive vertical temperature differences gives chilled ceilings the advantage over chilled floors for use with displacement ventilation.
Original languageEnglish
JournalScience and Technology for the Built Environment
Volume22
Issue number3
Pages (from-to)317-327
Number of pages11
ISSN2374-4731
DOIs
Publication statusPublished - 2016

Fingerprint

Dive into the research topics of 'Thermal comfort and ventilation effectiveness in an office room with radiant floor cooling and displacement ventilation'. Together they form a unique fingerprint.

Cite this