Theory of estimation-of-distribution algorithms

Research output: Chapter in Book/Report/Conference proceedingArticle in proceedingsResearchpeer-review

Abstract

Summary Runtime analysis for simple univariate EDAs Identified similarities to and differences from simple EAs Genetic drift a major obstacle Sensitive to parameters (phase transitions) Robust to noise Significance-based EDAs as novel theory-driven approach Future work Combinatorial problems Multivariate EDAs Classification of problems w. r. t. appropriateness for EAs/EDAs.
Original languageEnglish
Title of host publicationProceedings of the Genetic and Evolutionary Computation Conference Companion
PublisherAssociation for Computing Machinery
Publication date2018
Pages1170-1197
ISBN (Print)978-1-4503-5764-7
DOIs
Publication statusPublished - 2018
Event2018 Genetic and Evolutionary Computation Conference - Kyoto Terrsa, Kyoto, Japan
Duration: 15 Jul 201819 Jul 2018

Conference

Conference2018 Genetic and Evolutionary Computation Conference
LocationKyoto Terrsa
CountryJapan
CityKyoto
Period15/07/201819/07/2018

Fingerprint Dive into the research topics of 'Theory of estimation-of-distribution algorithms'. Together they form a unique fingerprint.

Cite this