The X-Ray Reflection Spectrum of the Radio-loud Quasar 4C 74.26 - DTU Orbit
(25/09/2019)

The X-Ray Reflection Spectrum of the Radio-loud Quasar 4C 74.26

The relativistic jets created by some active galactic nuclei are important agents of AGN feedback. In spite of this, our understanding of what produces these jets is still incomplete. X-ray observations, which can probe the processes operating in the central regions in the immediate vicinity of the supermassive black hole, the presumed jet launching point, are potentially particularly valuable in illuminating the jet formation process. Here, we present the hard X-ray NuSTAR observations of the radio-loud quasar 4C 74.26 in a joint analysis with quasi-simultaneous, soft X-ray Swift observations. Our spectral analysis reveals a high-energy cutoff of $\gamma_{\text{cut}} = 4-180$ keV and confirms the presence of ionized reflection in the source. From the average spectrum we detect that the accretion disk is mildly recessed, with an inner radius of $R_{\text{in}} = 4-180$ R_g. However, no significant evolution of the inner radius is seen during the three months covered by our NuSTAR campaign. This lack of variation could mean that the jet formation in this radio-loud quasar differs from what is observed in broad-line radio galaxies.

General information
Publication status: Published
Organisations: National Space Institute, Astrophysics and Atmospheric Physics, Virginia Tech, University of Cambridge, Georgia Institute of Technology, University of California at Berkeley, University of Southampton, Technical University of Denmark, Harvard-Smithsonian Center for Astrophysics, Columbia University, California Institute of Technology, Pontificia Universidad Catolica de Chile, NASA Goddard Space Flight Center
Number of pages: 7
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Astrophysical Journal
Volume: 841
Issue number: 2
ISSN (Print): 0004-637X
Ratings:
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 4.41 SJR 2.23 SNIP 1.191
Web of Science (2017): Impact factor 8.561
Web of Science (2017): Indexed yes
Original language: English
Keywords: Black hole physics, Galaxies: active, Quasars: individual (4C 74.26), Quasars: supermassive black holes, X-rays: individual (4C 74.26)
Electronic versions:
DOIs:
10.3847/1538-4357/aa6d07
Source: FindIt
Source ID: 2370706502
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review