The triplespar campaign: Validation of a reduced-order simulation model for floating wind turbines

Frank Lemmer, Wei Yu, Po Wen Cheng, Antonio Manuel Pegalajar Jurado, Michael Borg, Robert Flemming Mikkelsen, Henrik Bredmose

Research output: Chapter in Book/Report/Conference proceedingArticle in proceedingsResearchpeer-review

Abstract

Different research groups have recently tested scaled floating offshore wind turbines including blade pitch control. A test conducted by the University of Stuttgart (Germany), DTU (Denmark) and CENER (Spain) at the Danish Hydraulic Institute (DHI) in 2016 successfully demonstrated a real-time blade pitch controller on the public 10MW TripleSpar semisubmersible concept at a scale of 1/60. In the presented work a reduced-order simulation model including control is compared against the model tests. The model has only five degrees of freedom and is formulated either in the time-domain or in the frequency-domain. In a first step the Morison drag coefficients are identified from decay tests as well as irregular wave cases. The identified drag coefficients depend clearly on the sea state, with the highest ones for the decay tests and small sea states. This is an important finding, for example for the design of a robust controller, which depends on the system damping. It is shown that the simplified model can well represent the dominant physical effects of the coupled system with a substantially reduced simulation time, compared to state-of-the-art models.
Original languageEnglish
Title of host publicationASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering
Number of pages10
Volume10
PublisherAmerican Society of Mechanical Engineers
Publication date2018
Article numberOMAE2018-78119
ISBN (Print)978-0-7918-5131-9
DOIs
Publication statusPublished - 2018
Event37th International Conference on Ocean, Offshore and Artic Engineering (OMAE2018) - Madrid, Spain
Duration: 17 Jun 201822 Jun 2018

Conference

Conference37th International Conference on Ocean, Offshore and Artic Engineering (OMAE2018)
CountrySpain
CityMadrid
Period17/06/201822/06/2018

Cite this

Lemmer, F., Yu, W., Cheng, P. W., Pegalajar Jurado, A. M., Borg, M., Mikkelsen, R. F., & Bredmose, H. (2018). The triplespar campaign: Validation of a reduced-order simulation model for floating wind turbines. In ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering (Vol. 10). [OMAE2018-78119] American Society of Mechanical Engineers. https://doi.org/10.1115/OMAE2018-78119
Lemmer, Frank ; Yu, Wei ; Cheng, Po Wen ; Pegalajar Jurado, Antonio Manuel ; Borg, Michael ; Mikkelsen, Robert Flemming ; Bredmose, Henrik. / The triplespar campaign: Validation of a reduced-order simulation model for floating wind turbines. ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. Vol. 10 American Society of Mechanical Engineers, 2018.
@inproceedings{c93a760ae83f4a3c9d74797b2fa0a75b,
title = "The triplespar campaign: Validation of a reduced-order simulation model for floating wind turbines",
abstract = "Different research groups have recently tested scaled floating offshore wind turbines including blade pitch control. A test conducted by the University of Stuttgart (Germany), DTU (Denmark) and CENER (Spain) at the Danish Hydraulic Institute (DHI) in 2016 successfully demonstrated a real-time blade pitch controller on the public 10MW TripleSpar semisubmersible concept at a scale of 1/60. In the presented work a reduced-order simulation model including control is compared against the model tests. The model has only five degrees of freedom and is formulated either in the time-domain or in the frequency-domain. In a first step the Morison drag coefficients are identified from decay tests as well as irregular wave cases. The identified drag coefficients depend clearly on the sea state, with the highest ones for the decay tests and small sea states. This is an important finding, for example for the design of a robust controller, which depends on the system damping. It is shown that the simplified model can well represent the dominant physical effects of the coupled system with a substantially reduced simulation time, compared to state-of-the-art models.",
author = "Frank Lemmer and Wei Yu and Cheng, {Po Wen} and {Pegalajar Jurado}, {Antonio Manuel} and Michael Borg and Mikkelsen, {Robert Flemming} and Henrik Bredmose",
year = "2018",
doi = "10.1115/OMAE2018-78119",
language = "English",
isbn = "978-0-7918-5131-9",
volume = "10",
booktitle = "ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering",
publisher = "American Society of Mechanical Engineers",
address = "United States",

}

Lemmer, F, Yu, W, Cheng, PW, Pegalajar Jurado, AM, Borg, M, Mikkelsen, RF & Bredmose, H 2018, The triplespar campaign: Validation of a reduced-order simulation model for floating wind turbines. in ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. vol. 10, OMAE2018-78119, American Society of Mechanical Engineers, 37th International Conference on Ocean, Offshore and Artic Engineering (OMAE2018), Madrid, Spain, 17/06/2018. https://doi.org/10.1115/OMAE2018-78119

The triplespar campaign: Validation of a reduced-order simulation model for floating wind turbines. / Lemmer, Frank; Yu, Wei; Cheng, Po Wen; Pegalajar Jurado, Antonio Manuel; Borg, Michael; Mikkelsen, Robert Flemming; Bredmose, Henrik.

ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. Vol. 10 American Society of Mechanical Engineers, 2018. OMAE2018-78119.

Research output: Chapter in Book/Report/Conference proceedingArticle in proceedingsResearchpeer-review

TY - GEN

T1 - The triplespar campaign: Validation of a reduced-order simulation model for floating wind turbines

AU - Lemmer, Frank

AU - Yu, Wei

AU - Cheng, Po Wen

AU - Pegalajar Jurado, Antonio Manuel

AU - Borg, Michael

AU - Mikkelsen, Robert Flemming

AU - Bredmose, Henrik

PY - 2018

Y1 - 2018

N2 - Different research groups have recently tested scaled floating offshore wind turbines including blade pitch control. A test conducted by the University of Stuttgart (Germany), DTU (Denmark) and CENER (Spain) at the Danish Hydraulic Institute (DHI) in 2016 successfully demonstrated a real-time blade pitch controller on the public 10MW TripleSpar semisubmersible concept at a scale of 1/60. In the presented work a reduced-order simulation model including control is compared against the model tests. The model has only five degrees of freedom and is formulated either in the time-domain or in the frequency-domain. In a first step the Morison drag coefficients are identified from decay tests as well as irregular wave cases. The identified drag coefficients depend clearly on the sea state, with the highest ones for the decay tests and small sea states. This is an important finding, for example for the design of a robust controller, which depends on the system damping. It is shown that the simplified model can well represent the dominant physical effects of the coupled system with a substantially reduced simulation time, compared to state-of-the-art models.

AB - Different research groups have recently tested scaled floating offshore wind turbines including blade pitch control. A test conducted by the University of Stuttgart (Germany), DTU (Denmark) and CENER (Spain) at the Danish Hydraulic Institute (DHI) in 2016 successfully demonstrated a real-time blade pitch controller on the public 10MW TripleSpar semisubmersible concept at a scale of 1/60. In the presented work a reduced-order simulation model including control is compared against the model tests. The model has only five degrees of freedom and is formulated either in the time-domain or in the frequency-domain. In a first step the Morison drag coefficients are identified from decay tests as well as irregular wave cases. The identified drag coefficients depend clearly on the sea state, with the highest ones for the decay tests and small sea states. This is an important finding, for example for the design of a robust controller, which depends on the system damping. It is shown that the simplified model can well represent the dominant physical effects of the coupled system with a substantially reduced simulation time, compared to state-of-the-art models.

U2 - 10.1115/OMAE2018-78119

DO - 10.1115/OMAE2018-78119

M3 - Article in proceedings

SN - 978-0-7918-5131-9

VL - 10

BT - ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering

PB - American Society of Mechanical Engineers

ER -

Lemmer F, Yu W, Cheng PW, Pegalajar Jurado AM, Borg M, Mikkelsen RF et al. The triplespar campaign: Validation of a reduced-order simulation model for floating wind turbines. In ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. Vol. 10. American Society of Mechanical Engineers. 2018. OMAE2018-78119 https://doi.org/10.1115/OMAE2018-78119