TY - JOUR
T1 - The surface states of transition metal X-ides under electrocatalytic conditions
AU - Liu, Heng
AU - Jia, Xue
AU - Cao, Ang
AU - Wei, Li
AU - D’agostino, Carmine
AU - Li, Hao
PY - 2023
Y1 - 2023
N2 - Due to conversion equilibrium between solvent and H- and O-containing adsorbates, the true surface state of a catalyst under a particular electrochemical condition is often overlooked in electrocatalysis research. Herein, by using surface Pourbaix analysis, we show that many electrocatalytically active transition metal X-ides (e.g., oxides, nitrides, carbides, and hydroxides) tend to possess the surface states different from their pristine stoichiometric forms under the pH and potential of interest due to water dissociation or generation. Summarizing the density functional theory calculated surface Pourbaix diagrams of 14 conditionally stable transition metal X-ide materials, we found that some of these surfaces tend to be covered by O-containing adsorbates at a moderate or high potential, while vacancies or H-covered surfaces may form at a low potential. These results suggest the possibility of poisoning or creation of surface sites beyond the pristine surface, implying that the surface state under reaction conditions (pH and potentials) needs to be considered before the identification and analysis of active sites of a transition metal X-ide catalyst. In addition, we provide an explanation of the observed theory and experiment discrepancy that some transition metal X-ides are “more stable in experiment than in theory.” Based on our findings, we conclude that analyzing the surface state of transition metal X-ide electrocatalysts by theoretical calculations (e.g., surface Pourbaix diagram analysis), in situ/operando and post-reaction experiments are indispensable to accurately understand the underlying catalytic mechanisms.
AB - Due to conversion equilibrium between solvent and H- and O-containing adsorbates, the true surface state of a catalyst under a particular electrochemical condition is often overlooked in electrocatalysis research. Herein, by using surface Pourbaix analysis, we show that many electrocatalytically active transition metal X-ides (e.g., oxides, nitrides, carbides, and hydroxides) tend to possess the surface states different from their pristine stoichiometric forms under the pH and potential of interest due to water dissociation or generation. Summarizing the density functional theory calculated surface Pourbaix diagrams of 14 conditionally stable transition metal X-ide materials, we found that some of these surfaces tend to be covered by O-containing adsorbates at a moderate or high potential, while vacancies or H-covered surfaces may form at a low potential. These results suggest the possibility of poisoning or creation of surface sites beyond the pristine surface, implying that the surface state under reaction conditions (pH and potentials) needs to be considered before the identification and analysis of active sites of a transition metal X-ide catalyst. In addition, we provide an explanation of the observed theory and experiment discrepancy that some transition metal X-ides are “more stable in experiment than in theory.” Based on our findings, we conclude that analyzing the surface state of transition metal X-ide electrocatalysts by theoretical calculations (e.g., surface Pourbaix diagram analysis), in situ/operando and post-reaction experiments are indispensable to accurately understand the underlying catalytic mechanisms.
U2 - 10.1063/5.0147123
DO - 10.1063/5.0147123
M3 - Journal article
C2 - 37003787
SN - 0021-9606
VL - 158
JO - Journal of Chemical Physics
JF - Journal of Chemical Physics
IS - 12
M1 - 124705
ER -