The Manufacture of Unbreakable Bionics via Multifunctional and Self-Healing Silk–Graphene Hydrogels

Firoz Babu Kadumudi, Masoud Hasany, Malgorzata Karolina Pierchala, Mohammadjavad Jahanshahi, Nayere Taebnia, Mehdi Mehrali, Cristian Florian Mitu, Mohammad-Ali Shahbazi, Tiberiu-Gabriel Zsurzsan, Arnold Knott, Thomas L. Andresen, Alireza Dolatshahi-Pirouz*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

Biomaterials capable of transmitting signals over longer distances than those in rigid electronics can open new opportunities for humanity by mimicking the way tissues propagate information. For seamless mirroring of the human body, they also have to display conformability to its curvilinear architecture, as well as, reproducing native-like mechanical and electrical properties combined with the ability to self-heal on demand like native organs and tissues. Along these lines, a multifunctional composite is developed by mixing silk fibroin and reduced graphene oxide. The material is coined “CareGum” and capitalizes on a phenolic glue to facilitate sacrificial and hierarchical hydrogen bonds. The hierarchal bonding scheme gives rise to high mechanical toughness, record-breaking elongation capacity of ≈25 000%, excellent conformability to arbitrary and complex surfaces, 3D printability, a tenfold increase in electrical conductivity, and a fourfold increase in Young's modulus compared to its pristine counterpart. By taking advantage of these unique properties, a durable and self-healing bionic glove is developed for hand gesture sensing and sign translation. Indeed, CareGum is a new advanced material with promising applications in fields like cyborganics, bionics, soft robotics, human–machine interfaces, 3D-printed electronics, and flexible bioelectronics.

Original languageEnglish
Article number2100047
JournalAdvanced Materials
Volume33
Issue number35
ISSN0935-9648
DOIs
Publication statusPublished - 2021

Keywords

  • 2D nanomaterials and 3D printing
  • Flexible electronics
  • Graphene
  • Silk fibroin
  • Strain-sensors

Fingerprint

Dive into the research topics of 'The Manufacture of Unbreakable Bionics via Multifunctional and Self-Healing Silk–Graphene Hydrogels'. Together they form a unique fingerprint.

Cite this