

In this paper, we consider the Manpower Allocation Problem with Time Windows, Job-Teaming Constraints and a limited number of teams (m-MAPTWTC). Given a set of teams and a set of tasks, the problem is to assign to each team a sequential order of tasks to maximize the total number of assigned tasks. Both teams and tasks may be restricted by time windows outside which operation is not possible. Some tasks require cooperation between teams, and all teams cooperating must initiate execution simultaneously. We present an IP-model for the problem, which is decomposed using Dantzig-Wolfe decomposition. The problem is solved by column generation in a Branch-and-Price framework. Simultaneous execution of tasks is enforced by the branching scheme. To test the efficiency of the proposed algorithm, 12 realistic test instances are introduced. The algorithm is able to find the optimal solution in 11 of the test instances. The main contribution of this article is the addition of synchronization between teams in an exact optimization context.

General information
Publication status: Published
Organisations: Operations Research, Department of Management Engineering, Department of Informatics and Mathematical Modeling
Contributors: Hansen, A. D., Kolind, E., Clausen, J.
Publication date: 2007

Publication information
Publisher: Informatics and Mathematical Modelling, Technical University of Denmark, DTU
Original language: English
Electronic versions:
imm5192.pdf
Source: orbit
Source-ID: 200901
Research output: Book/Report › Report – Annual report year: 2007 › Research › peer-review