The Manpower Allocation Problem with Time Windows and Job-Teaming Constraints: A Branch-and-Price Approach - DTU Orbit (12/08/2019)

The Manpower Allocation Problem with Time Windows and Job-Teaming Constraints: A Branch-and-Price Approach

In this paper, we consider the Manpower Allocation Problem with Time Windows, Job-Teaming Constraints and a limited number of teams (m-MAPTWTC). Given a set of teams and a set of tasks, the problem is to assign to each team a sequential order of tasks to maximize the total number of assigned tasks. Both teams and tasks may be restricted by time windows outside which operation is not possible. Some tasks require cooperation between teams, and all teams cooperating must initiate execution simultaneously. We present an IP-model for the problem, which is decomposed using Dantzig-Wolfe decomposition. The problem is solved by column generation in a Branch-and-Price framework. Simultaneous execution of tasks is enforced by the branching scheme. To test the efficiency of the proposed algorithm, 12 realistic test instances are introduced. The algorithm is able to find the optimal solution in 11 of the test instances. The main contribution of this article is the addition of synchronization between teams in an exact optimization context.

General information
Publication status: Published
Organisations: Operations Research, Department of Management Engineering, Department of Informatics and Mathematical Modeling
Contributors: Hansen, A. D., Kolind, E., Clausen, J.
Pages: 1145-1157
Publication date: 2009
Peer-reviewed: Yes

Publication information
Journal: Computers & Operations Research
Volume: 36
Issue number: 4
ISSN (Print): 0305-0548
Ratings:
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 2.28 SNIP 2.385
Web of Science (2009): Indexed yes
Original language: English
Keywords: Branch-and-Price, Synchronization, Manpower allocation, Crew scheduling, Column generation, Vehicle routing with time windows, Decomposition, Branching rules, Integer programming, Set covering, Simultaneous execution
Electronic versions:
DohnKolindClausen2009_postprint.pdf
DOIs:
10.1016/j.cor.2007.12.011
Source: orbit
Source-ID: 204965
Research output: Contribution to journal › Journal article – Annual report year: 2009 › Research › peer-review