The liner shipping berth scheduling problem with transit times

The liner shipping berth scheduling problem with transit times

In this paper speed optimization of an existing liner shipping network is solved by adjusting the port berth times. The objective is to minimize fuel consumption while retaining the customer transit times including the transhipment times. To avoid too many changes to the time table, changes of port berth times are only accepted if they lead to savings above a threshold value. Since the fuel consumption of a vessel is a non-linear convex function of the speed, it is approximated by a piecewise linear function. The developed model is solved using exact methods in less than two minutes for large instances. Computational experiments on real-size liner shipping networks are presented showing that fuels savings in the magnitude 2–10% can be obtained. The work has been carried out in collaboration with Maersk Line and the tests instances are confirmed to be representative of real-life networks.

General information
Publication status: Published
Organisations: Department of Management Engineering, Management Science, Maersk Group, Technical University of Denmark
Pages: 116–128
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Transportation Research. Part E: Logistics and Transportation Review
Volume: 86
ISSN (Print): 1366-5545
Ratings:
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.68
Web of Science (2016): Impact factor 2.974
Web of Science (2016): Indexed yes
Original language: English
Keywords: Speed optimization, Linear approximation, Cubic function, Liner shipping, Transit times
Electronic versions:
SchArticleWeekCons.pdf. Embargo ended: 21/01/2018
DOIs:
10.1016/j.tre.2015.12.006
Source: PublicationPreSubmission
Source ID: 120480905
Research output: Contribution to journal › Journal article – Annual report year: 2016 › Research › peer-review