TY - JOUR
T1 - The JBEI quantitative metabolic modeling library (jQMM): a python library for modeling microbial metabolism
AU - Birkel, Garrett W.
AU - Ghosh, Amit
AU - Kumar, Vinay S.
AU - Weaver, Daniel
AU - Ando, David
AU - Backman, Tyler W. H.
AU - Arkin, Adam Paul
AU - Keasling, Jay D.
AU - Martin, Hector Garcia
PY - 2017
Y1 - 2017
N2 - Background: Modeling of microbial metabolism is a topic of growing importance in biotechnology. Mathematical modeling helps provide a mechanistic understanding for the studied process, separating the main drivers from the circumstantial ones, bounding the outcomes of experiments and guiding engineering approaches. Among different modeling schemes, the quantification of intracellular metabolic fluxes (i.e. the rate of each reaction in cellular metabolism) is of particular interest for metabolic engineering because it describes how carbon and energy flow throughout the cell. In addition to flux analysis, new methods for the effective use of the ever more readily available and abundant -omics data (i.e. transcriptomics, proteomics and metabolomics) are urgently needed.Results: The jQMM library presented here provides an open-source, Python-based framework for modeling internal metabolic fluxes and leveraging other -omics data for the scientific study of cellular metabolism and bioengineering purposes. Firstly, it presents a complete toolbox for simultaneously performing two different types of flux analysis that are typically disjoint: Flux Balance Analysis and C-13 Metabolic Flux Analysis. Moreover, it introduces the capability to use C-13 labeling experimental data to constrain comprehensive genome-scale models through a technique called two-scale C-13 Metabolic Flux Analysis (2S-C-13 MFA). In addition, the library includes a demonstration of a method that uses proteomics data to produce actionable insights to increase biofuel production. Finally, the use of the jQMM library is illustrated through the addition of several Jupyter notebook demonstration files that enhance reproducibility and provide the capability to be adapted to the user's specific needs.Conclusions: jQMM will facilitate the design and metabolic engineering of organisms for biofuels and other chemicals, as well as investigations of cellular metabolism and leveraging -omics data. As an open source software project, we hope it will attract additions from the community and grow with the rapidly changing field of metabolic engineering.
AB - Background: Modeling of microbial metabolism is a topic of growing importance in biotechnology. Mathematical modeling helps provide a mechanistic understanding for the studied process, separating the main drivers from the circumstantial ones, bounding the outcomes of experiments and guiding engineering approaches. Among different modeling schemes, the quantification of intracellular metabolic fluxes (i.e. the rate of each reaction in cellular metabolism) is of particular interest for metabolic engineering because it describes how carbon and energy flow throughout the cell. In addition to flux analysis, new methods for the effective use of the ever more readily available and abundant -omics data (i.e. transcriptomics, proteomics and metabolomics) are urgently needed.Results: The jQMM library presented here provides an open-source, Python-based framework for modeling internal metabolic fluxes and leveraging other -omics data for the scientific study of cellular metabolism and bioengineering purposes. Firstly, it presents a complete toolbox for simultaneously performing two different types of flux analysis that are typically disjoint: Flux Balance Analysis and C-13 Metabolic Flux Analysis. Moreover, it introduces the capability to use C-13 labeling experimental data to constrain comprehensive genome-scale models through a technique called two-scale C-13 Metabolic Flux Analysis (2S-C-13 MFA). In addition, the library includes a demonstration of a method that uses proteomics data to produce actionable insights to increase biofuel production. Finally, the use of the jQMM library is illustrated through the addition of several Jupyter notebook demonstration files that enhance reproducibility and provide the capability to be adapted to the user's specific needs.Conclusions: jQMM will facilitate the design and metabolic engineering of organisms for biofuels and other chemicals, as well as investigations of cellular metabolism and leveraging -omics data. As an open source software project, we hope it will attract additions from the community and grow with the rapidly changing field of metabolic engineering.
KW - Flux analysis
KW - 13 C Metabolic Flux Analysis
KW - -omics data
KW - Predictive biology
U2 - 10.1186/s12859-017-1615-y
DO - 10.1186/s12859-017-1615-y
M3 - Journal article
C2 - 28381205
SN - 1471-2105
VL - 18
JO - B M C Bioinformatics
JF - B M C Bioinformatics
M1 - 205
ER -