Abstract
The 15-instrument suite consists of two small-angle instruments, two reflectometers, an imaging beamline, two single-crystal diffractometers; one for macromolecular crystallography and one for magnetism, two powder diffractometers, and an engineering diffractometer, as well as an array of five inelastic instruments comprising two chopper spectrometers, an inverse-geometry single-crystal excitations spectrometer, an instrument for vibrational spectroscopy and a high-resolution backscattering spectrometer. The conceptual design, performance and scientific drivers of each of these instruments are described.
All of the instruments are designed to provide breakthrough new scientific capability, not currently available at existing facilities, building on the inherent strengths of the ESS long-pulse neutron source of high flux, flexible resolution and large bandwidth. Each of them is predicted to provide world-leading performance at an accelerator power of 2 MW. This technical capability translates into a very broad range of scientific capabilities. The composition of the instrument suite has been chosen to maximise the breadth and depth of the scientific impact of the early years of the ESS, and provide a solid base for completion and further expansion of the facility.
Original language | English |
---|---|
Article number | 163402 |
Journal | Nuclear Inst. and Methods in Physics Research, A |
Volume | 957 |
Number of pages | 39 |
ISSN | 0168-9002 |
DOIs | |
Publication status | Published - 2020 |
Keywords
- Slow neutron scattering
- Pulsed neutron instrumentation
- Accelerator-based neutron facilities
- ESS instrument suite