The influence of the bound vortex on the aerodynamics of curved wind turbine blades

Research output: Contribution to journalConference articleResearchpeer-review

59 Downloads (Pure)


Passive load alleviation on wind turbine blades can be achieved through geometric bend-twist coupling, for example by sweeping the blade backwards. In order to obtain the correct load distribution of a curved blade with in-plane sweep and/or out-of-plane dihedral, the influence of the blade shape on the aerodynamics must be modelled correctly. This includes the influence of the curved bound vortex, and it is especially important when designing a wind turbine blade with aeroelastic tailoring. In this paper, the background for modelling the curved bound vortex influence will be described in detail and a modified method is proposed. The proposed method of bound vorticity modelling is compared for curved and straight translating wings as well as wind turbine blades with results from a panel code and a Navier-Stokes solver. From this comparison, the advantages of the current modification with respect to the other lifting-line implementations are shown. The method proposed in the present work is general and applicable to any lifting-line like model.
Original languageEnglish
Article number052038
Book seriesJournal of Physics: Conference Series
Issue number5
Number of pages12
Publication statusPublished - 2020
EventTORQUE 2020 - Online event, Netherlands
Duration: 28 Sep 20202 Oct 2020


ConferenceTORQUE 2020
LocationOnline event
Internet address


Dive into the research topics of 'The influence of the bound vortex on the aerodynamics of curved wind turbine blades'. Together they form a unique fingerprint.

Cite this