Abstract
The influence of finite Larmor radius (FLR) effects on the perpendicular convection of isolated
particle density filaments driven by interchange motions in magnetized plasmas is investigated
using a two-moment gyrofluid model. By means of numerical simulations on a two-dimensional,
bi-periodic domain perpendicular to the magnetic field, it is demonstrated that the radial velocities
of the blob-like filaments are roughly described by the inertial scaling, which prescribes a velocity
proportional to the square root of the summed electron and ion pressures times the square root of
the blob width. Due to FLR effects, the poloidal up-down symmetry in the particle density field
observed in the zero Larmor radius limit is broken. The symmetry breaking implies a poloidal
motion of the blobs in the BrB direction. At later times, the direction of the poloidal motion is
reversed when the blob is decelerated. It is shown that the spatial structure of the blobs depends
on the ratio of the ion gyroradius to the initial filament size qi=r. Blobs with qi=r&0:2 remain
coherent as they move through the scrape-off layer, whereas blobs with qi=r.0:1 form plume-like
structures that loose their coherence and eventually become fragmented. After having traveled
approximately five times their initial widths, coherent blobs carry 2–3 times the particle density
of fragmented blobs. It is shown that FLR effects reduce mixing, stretching, and generation of
small spatial scales in the particle density field by setting up a sheared flow surrounding the blob.
Original language | English |
---|---|
Journal | Physics of Plasmas |
Volume | 18 |
Pages (from-to) | 112504 |
ISSN | 1070-664X |
DOIs | |
Publication status | Published - 2011 |