Abstract
A control simulation model, called LOCUS, is used to investigate the effects of spatially distributed rain and the possibilities to benefit from this phenomenon by means of real time control. The study is undertaken for a catchment in Copenhagen, where rainfall is measured with a network of 8 rain gauges. Simulation of a single rain event, which is assumed to be homogeneous, i.e. using one rain gauge for the whole catchment, leads to large over- and underestimates of the systems output variables. Therefore, when analyzing a single event the highest possible degree of rainfall information may be desired. Time-series simulations are performed for both an uncontrolled and a controlled system. It is shown that from a statistical point of view, rainfall distribution is NOT significant concerning the probability of occurrence of an overflow. The main contributing factor to the potential of real time control, concerning minimizing overflows, is to be found in the system itself, i.e. the distribution of available storage and discharge capacity. When other operational objectives are involved, e.g., to minimize peak flows to the treatment plant, rainfall distribution may be an important factor.
Original language | English |
---|---|
Journal | Nordic Hydrology |
Volume | 23 |
Issue number | 2 |
Pages (from-to) | 121-136 |
ISSN | 0029-1277 |
DOIs | |
Publication status | Published - 1992 |