The Impact of Assuming Perfect Foresight When Planning Infrastructure in the Water–Energy–Food Nexus

Raphael Payet-Burin*, Mikkel Kromman, Silvio J. Pereira-Cardenal, Kenneth M. Strzepek, Peter Bauer-Gottwein

*Corresponding author for this work

    Research output: Contribution to journalJournal articleResearchpeer-review

    99 Downloads (Pure)

    Abstract

    Perfect foresight hydroeconomic optimization models are tools to evaluate impacts of water infrastructure investments and policies considering complex system interlinkages. However, when assuming perfect foresight, optimal management decisions are found assuming perfect knowledge of climate and runoff, which might bias the economic evaluation of investments and policies. We investigate the impacts of assuming perfect foresight by using Model Predictive Control (MPC) as an alternative. We apply MPC in WHAT-IF, a hydroeconomic optimization model, for two study cases: a synthetic setup inspired by the Nile River, and a large-scale investment problem on the Zambezi River Basin considering the water–energy–food nexus. We validate the MPC framework against Stochastic Dynamic Programming and observe more realistic modeled reservoir operation compared to perfect foresight, especially regarding anticipation of spills and droughts. We find that the impact of perfect foresight on total system benefits remains small (<2%). However, when evaluating investments and policies using with-without analysis, perfect foresight is found to overestimate or underestimate values of investments by more than 20% in some scenarios. As the importance of different effects varies between scenarios, it is difficult to find general, case-independent guidelines predicting whether perfect foresight is a reasonable assumption. However, we find that the uncertainty linked to climate change in our study cases has more significant impacts than the assumption of perfect foresight. Hence, we recommend MPC to perform the economic evaluation of investments and policies, however, under high uncertainty of future climate, increased computational costs of MPC must be traded off against computational costs of exhaustive scenario exploration.
    Original languageEnglish
    Article number778003
    JournalFrontiers in Water
    Volume3
    Number of pages14
    ISSN2624-9375
    DOIs
    Publication statusPublished - 2021

    Keywords

    • Model Predictive Control
    • Perfect foresight
    • Hydroeconomic models
    • Water–energy–food nexus
    • Climate change
    • Water infrastructure planning
    • IWRM

    Fingerprint

    Dive into the research topics of 'The Impact of Assuming Perfect Foresight When Planning Infrastructure in the Water–Energy–Food Nexus'. Together they form a unique fingerprint.

    Cite this