The identification and functional annotation of RNA structures conserved in vertebrates

Ernst Stefan Seemann, Aashiq Hussain Mirza, Claus Hansen, Claus Heiner Bang-Berthelsen, Christian Garde, Mikkel Christensen-Dalsgaard, Elfar Torarinsson, Christopher Workman, Flemming Pociot, Henrik Nielsen, Niels Tommerup, Walter L. Ruzzo, Jan Gorodkin

Research output: Contribution to journalJournal articleResearchpeer-review

539 Downloads (Pure)


Structured elements of RNA molecules are essential in, e.g., RNA stabilization, localization and protein interaction, and their conservation across species suggests a common functional role. We computationally screened vertebrate genomes for Conserved RNA Structures (CRSs), leveraging structure-based, rather than sequence-based, alignments. After careful correction for sequence identity and GC content, we predict ~516k human genomic regions containing CRSs. We find that a substantial fraction of human-mouse CRS regions (i) co-localize consistently with binding sites of the same RNA binding proteins (RBPs) or (ii) are transcribed in corresponding tissues. Additionally, a CaptureSeq experiment revealed expression of many of our CRS regions in human fetal brain, including 662 novel ones. For selected human and mouse candidate pairs, qRT-PCR and in vitro RNA structure probing supported both shared expression and shared structure despite low abundance and low sequence identity. About 30k CRS regions are located near coding or long non-coding RNA genes or within enhancers. Structured (CRS overlapping) enhancer RNAs and extended 3' ends have significantly increased expression levels over their non-structured counterparts. Our findings of transcribed uncharacterized regulatory regions that contain CRSs support their RNA-mediated functionality.
Original languageEnglish
JournalGenome Research
Pages (from-to)1371-1383
Number of pages14
Publication statusPublished - 2017


Dive into the research topics of 'The identification and functional annotation of RNA structures conserved in vertebrates'. Together they form a unique fingerprint.

Cite this