The GH5 1,4-β-mannanase from Bifidobacterium animalis subsp. lactis Bl-04 possesses a low-affinity mannan-binding module and highlights the diversity of mannanolytic enzymes

Johan Morrill, Evelina Kulcinskaja, Anna Maria Sulewska, Sampo Lahtinen, Henrik Stålbrand, Birte Svensson, Maher Abou Hachem

    Research output: Contribution to journalJournal articleResearchpeer-review

    334 Downloads (Pure)

    Abstract

    β-Mannans are abundant and diverse plant structural and storage polysaccharides. Certain human gut microbiota members including health-promoting Bifidobacterium spp. catabolize dietary mannans. Little insight is available on the enzymology of mannan deconstruction in the gut ecological niche. Here, we report the biochemical properties of the first family 5 subfamily 8 glycoside hydrolase (GH5_8) mannanase from the probiotic bacterium Bifidobacterium animalis subsp. lactis Bl-04 (BlMan5_8). BlMan5_8 possesses a novel low affinity carbohydrate binding module (CBM) specific for soluble mannan and displays the highest catalytic efficiency reported to date for a GH5 mannanase owing to a very high kcat (1828 ± 87 s-1) and a low Km (1.58 ± 0.23 g · L-1) using locust bean galactomannan as substrate. The novel CBM of BlMan5_8 mediates increased binding to soluble mannan based on affinity electrophoresis. Surface plasmon resonance analysis confirmed the binding of the CBM10 to manno-oligosaccharides, albeit with slightly lower affinity than the catalytic module of the enzyme. This is the first example of a low-affinity mannan-specific CBM, which forms a subfamily of CBM10 together with close homologs present only in mannanases. Members of this new subfamily lack an aromatic residue mediating binding to insoluble cellulose in canonical CBM10 members consistent with the observed low mannan affinity. BlMan5_8 is evolved for efficient deconstruction of soluble mannans, which is reflected by an exceptionally low Km and the presence of an atypical low affinity CBM, which increases binding to specifically to soluble mannan while causing minimal decrease in catalytic efficiency as opposed to enzymes with canonical mannan binding modules. These features highlight fine tuning of catalytic and binding properties to support specialization towards a preferred substrate, which is likely to confer an advantage in the adaptation to competitive ecological niches.
    Original languageEnglish
    JournalBMC Biochemistry
    Volume16
    Issue number26
    Number of pages12
    ISSN1471-2091
    DOIs
    Publication statusPublished - 2015

    Bibliographical note

    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

    Keywords

    • Bifidobacterium
    • Carbohydrate-binding module
    • Gut microbiota
    • Mannan
    • Probiotic bacteria
    • Surface plasmon resonance

    Fingerprint

    Dive into the research topics of 'The GH5 1,4-β-mannanase from <i>Bifidobacterium animalis</i> subsp. <i>lactis </i>Bl-04 possesses a low-affinity mannan-binding module and highlights the diversity of mannanolytic enzymes'. Together they form a unique fingerprint.

    Cite this