The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line

The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line

Chinese hamster ovary (CHO)-derived cell lines are the preferred host cells for the production of therapeutic proteins. Here we present a draft genomic sequence of the CHO-K1 ancestral cell line. The assembly comprises 2.45 Gb of genomic sequence, with 24,383 predicted genes. We associate most of the assembled scaffolds with 21 chromosomes isolated by microfluidics to identify chromosomal locations of genes. Furthermore, we investigate genes involved in glycosylation, which affect therapeutic protein quality, and viral susceptibility genes, which are relevant to cell engineering and regulatory concerns. Homologs of most human glycosylation-associated genes are present in the CHO-K1 genome, although 141 of these homologs are not expressed under exponential growth conditions. Many important viral entry genes are also present in the genome but not expressed, which may explain the unusual viral resistance property of CHO cell lines. We discuss how the availability of this genome sequence may facilitate genome-scale science for the optimization of biopharmaceutical protein production.

General information

Publication status: Published
Organisations: Center for Microbial Biotechnology, Department of Systems Biology, Novo Nordisk Foundation Center for Biosustainability, Network Reconstruction in Silico Biology, BGI-Shenzhen, GT Life Sciences, Shenzhen Hospital, University of Delaware, Stanford University

Pages: 735-741
Publication date: 2011
Peer-reviewed: Yes

Publication information

Journal: Nature Biotechnology
Volume: 29
Issue number: 8
ISSN (Print): 1087-0156
Ratings:
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 8.21 SJR 11.749 SNIP 6.173
Web of Science (2011): Impact factor 23.268
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
Original language: English
DOIs:
10.1038/nbt.1932
URLs:
http://www.nature.com/nbt/journal/v29/n8/full/nbt.1932.html
Source: orbit
Source ID: 286722

Research output: Contribution to journal › Journal article – Annual report year: 2011 › Research › peer-review