The fluid dynamics of swimming by jumping in copepods

Houshuo Jiang, Thomas Kiørboe

Research output: Contribution to journalJournal articleResearchpeer-review

613 Downloads (Pure)


Copepods swim either continuously by vibrating their feeding appendages or erratically by repeatedly beating their swimming legs resulting in a series of small jumps. The two swimming modes generate different hydrodynamic disturbances and therefore expose the swimmers differently to rheotactic predators. We developed an impulsive stresslet model to quantify the jump-imposed flow disturbance. The predicted flow consists of two counter-rotating viscous vortex rings of similar intensity, one in the wake and one around the body of the copepod. We showed that the entire jumping flow is spatially limited and temporally ephemeral owing to jump-impulsiveness and viscous decay. In contrast, continuous steady swimming generates two well-extended long-lasting momentum jets both in front of and behind the swimmer, as suggested by the well-known steady stresslet model. Based on the observed jump-swimming kinematics of a small copepod Oithona davisae, we further showed that jump-swimming produces a hydrodynamic disturbance with much smaller spatial extension and shorter temporal duration than that produced by a same-size copepod cruising steadily at the same average translating velocity. Hence, small copepods in jump-swimming are much less detectable by rheotactic predators. The present impulsive stresslet model improves a previously published impulsive Stokeslet model that applies only to the wake vortex.
Original languageEnglish
JournalJournal of the Royal Society. Interface
Issue number61
Pages (from-to)1090-1103
Publication statusPublished - 2011


  • Non-dimensional ‘jump number’
  • Hydrodynamic camouflage
  • Impulsive stresslet
  • Impulsive Stokeslet
  • Copepod jump
  • Viscous vortex ring


Dive into the research topics of 'The fluid dynamics of swimming by jumping in copepods'. Together they form a unique fingerprint.

Cite this