TY - JOUR
T1 - The evolving interface between synthetic biology and functional metagenomics
AU - van der Helm, Eric
AU - Genee, Hans J.
AU - Sommer, Morten O. A.
PY - 2018
Y1 - 2018
N2 - Nature is a diverse and rich source of bioactive pathways or novel building blocks for synthetic biology. In this Perspective, we describe the emerging research field in which metagenomes are functionally interrogated using synthetic biology. This approach substantially expands the set of identified biological activities and building blocks. In reviewing this field, we find that its potential for new biological discovery is dramatically increasing. Functional metagenomic mining using genetic circuits has led to the discovery of novel bioactivity such as amidases, NF-κB modulators, naphthalene degrading enzymes, cellulases, lipases and transporters. Using these genetic circuits as a template, improvements are made by designing biosensors, such as in vitro-evolved riboswitches and computationally redesigned transcription factors. Thus, powered by the rapidly expanding repertoire of biosensors and streamlined processes for automated genetic circuit design, a greater variety of complex selection circuits can be built, with resulting impacts on drug discovery and industrial biotechnology.
AB - Nature is a diverse and rich source of bioactive pathways or novel building blocks for synthetic biology. In this Perspective, we describe the emerging research field in which metagenomes are functionally interrogated using synthetic biology. This approach substantially expands the set of identified biological activities and building blocks. In reviewing this field, we find that its potential for new biological discovery is dramatically increasing. Functional metagenomic mining using genetic circuits has led to the discovery of novel bioactivity such as amidases, NF-κB modulators, naphthalene degrading enzymes, cellulases, lipases and transporters. Using these genetic circuits as a template, improvements are made by designing biosensors, such as in vitro-evolved riboswitches and computationally redesigned transcription factors. Thus, powered by the rapidly expanding repertoire of biosensors and streamlined processes for automated genetic circuit design, a greater variety of complex selection circuits can be built, with resulting impacts on drug discovery and industrial biotechnology.
U2 - 10.1038/s41589-018-0100-x
DO - 10.1038/s41589-018-0100-x
M3 - Journal article
C2 - 30013060
VL - 14
SP - 752
EP - 759
JO - Nature Chemical Biology
JF - Nature Chemical Biology
SN - 1552-4450
IS - 8
ER -