The electrical conductivity of the upper mantle and lithosphere from the magnetic signal due to ocean tidal flow

Neesha Regmi Schnepf, Alexey Kuvshinov, Alexander Grayver, Terence Sabaka, Nils Olsen

Research output: Contribution to conferenceConference abstract for conferenceResearchpeer-review


Oceans cover about seventy percent of the Earth and yet the overwhelming majority of seismological or electromagnetic (EM) observatories are found on continents. This provides a challenge for understanding composition, structure, and dynamics of Earth’s lithosphere and upper mantle in oceanic regions. The recent expansion in magnetic data from low-Earth orbiting satellite missions (Ørsted, CHAMP, SAC-C, and Swarm) has led to a rising interest in probing Earth from space. The largest benefit of using satellite data is much improved spatial coverage. Additionally, and in contrast to ground-based data, satellite data are overall uniform and very high quality. Probing the conductivity of the lithosphere and upper mantle requires EM variations with periods of a few hours. Electric currents generated by oceanic tides are a well-suited source within this period range. Ocean tides interact galvanically with Earth’s lithosphere (i.e. by direct coupling of the source currents in the ocean with the underlying substrate), enabling conductivity estimations at shallower depths. Here we present the results of determining a 1-D conductivity-depth profile of oceanic lithosphere and upper mantle using satellite and seafloor magnetic signals from the M2 ocean tide. With these data we also make an attempt to detect lateral variability of the Earth’s conductivity.
Original languageEnglish
Publication date2016
Number of pages1
Publication statusPublished - 2016
EventESA Living Planet Symposium 2016 - Prague, Czech Republic
Duration: 9 May 201613 May 2016


ConferenceESA Living Planet Symposium 2016
CountryCzech Republic
Internet address

Fingerprint Dive into the research topics of 'The electrical conductivity of the upper mantle and lithosphere from the magnetic signal due to ocean tidal flow'. Together they form a unique fingerprint.

Cite this