The effects of fibre architecture on fatigue life-time of composite materials

Jens Zangenberg Hansen, Rasmus Østergaard

    Research output: Book/ReportPh.D. thesis

    932 Downloads (Pure)


    Wind turbine rotor blades are among the largest composite structures manufactured of fibre reinforced polymer. During the service life of a wind turbine rotor blade, it is subjected to cyclic loading that potentially can lead to material failure, also known as fatigue. With reference to glass fibre reinforced composites used for the main laminate of a wind turbine rotor blade, the problem addressed in the present work is the effect of the fibre and fabric architecture on the fatigue life-time under tension-tension loading. Fatigue of composite materials has been a central research topic for the last decades; however, a clear answer to what causes the material to degrade, has not been given yet. Even for the simplest kind of fibre reinforced composites, the axially loaded unidirectional material, the fatigue failure modes are complex, and require advanced experimental techniques and characterisation methodologies in order to be assessed. Furthermore, numerical evaluation and predictions of the fatigue damage evolution are decisive in order to make future improvements.
    The present work is focused around two central themes: fibre architecture and fatigue failure. The fibre architecture is characterised using real material samples and numerical simulations. Experimental fatigue tests identify, quantify, and analyse the cause of failure. Different configurations of the fibre architecture are investigated in order to determine and understand the tension-tension fatigue failure mechanisms. A numerical study is used to examine the onset of fatigue failure. Topics treated include: experimental fatigue investigations, scanning electron microscopy, numerical simulations, advanced measurements techniques (micro computed tomography and thermovision), design of test specimens and preforms, and advanced materials characterisation. The results of the present work show that the fibre radii distribution has limited effect on the fibre architecture. This raises the question of which fibre radii distribution ensures optimum mechanical properties, damage tolerance, and fatigue performance. The experimental fatigue results and analyses identify and explain the onset of tension fatigue failure. It is documented that improvements of the fibre architecture and specimen design are needed in order to provide next generation of fatigue resistant composite materials for wind turbine rotor blades.
    Original languageEnglish
    PublisherDTU Wind Energy
    Number of pages188
    ISBN (Electronic)978-87-92896-48-3
    Publication statusPublished - 2013
    SeriesDTU Wind Energy PhD


    Dive into the research topics of 'The effects of fibre architecture on fatigue life-time of composite materials'. Together they form a unique fingerprint.

    Cite this