The effects of cement-based and cement-ash-based mortar slabs on indoor air quality

The effects of cement-based and cement-ash-based mortar slabs on indoor air quality

The effects of emissions from cement-based and cement-ash-based mortar slabs were studied. In the latter, 30% of the cement content had been replaced by sewage sludge ash. They were tested singly and together with either carpet or linoleum. The air exhausted from the chambers was assessed by means of odour intensity and chemical characterization of emissions. Odour intensity increased with the increased exposed area of the slabs. It did not differ significantly between cement-based or cement-ash-based mortar and neither did the chemical composition of the exhaust air. A significant sink effect was observed when linoleum was added to any of the two slabs examined. The sink effect increased as the exposed area of the slabs was increased. The odour intensity of the mixture of the slab and linoleum was lower than the intensity of odour produced by any of the two materials when tested singly. A plausible explanation for this effect was that the mortar slabs adsorbed the organic acids that were emitted at a high rate from linoleum, mortar being strong base. The same sink effect was also observed when the mortar slabs were exposed together with carpet but it was much smaller because the carpet emitted smaller quantities of acids. The total concentration of organic compounds measured was not appreciably different when the slabs were tested alone or together with linoleum or carpet. Considerable differences in the concentration of organic compounds were however observed when the total concentration of each functional group was calculated and compared.