TY - JOUR
T1 - The effect of mesomorphology upon the performance of nanoparticulate organic photovoltaic devices
AU - Dam, Henrik Friis
AU - Holmes, Natalie P.
AU - Andersen, Thomas Rieks
AU - Larsen-Olsen, Thue Trofod
AU - Barr, Matthew
AU - Kilcoyne, A. L. David
AU - Zhou, Xiaojing
AU - Dastoor, Paul C.
AU - Krebs, Frederik C
AU - Belcher, Warwick J.
PY - 2015
Y1 - 2015
N2 - Scanning transmission X-ray microscopy (STXM) compositional mapping has been used to probe the mesomorphology of nanoparticles (NPs) synthesized from two very different polymer:fullerene blends: poly(3-hexylthiophene) (P3HT): phenyl-C61-butyric acid methyl ester (PCBM) and poly[4,8-bis(2-ethylhexyloxy)benzo(1,2-b:4,5-b')dithiophene-alt-5, 6-bis(octyloxy)-4,7-di(thiophen-2-yl)(2,1,3-benzothiadiazole)-5,5'-diyl] (PSBTBT): PCBM. The STXM data shows that both blends form core-shell NP structures with similar shell compositions, but with different polymer:fullerene ratios in the core regions. P3HT:PCBM and PSBTBT:PCBM NP organic photovoltaic (OPV) devices have been fabricated and exhibit similar device efficiencies, despite the PSBTBT being a much higher performing low band gap material. By comparing the measured NP shell and core compositions with the optimized bulk hetero-junction (BHJ) compositions, we show that the relatively higher performance of the P3HT:PCBM NP device arises from the fact that its shell composition is much closer to the optimal BHJ value than that of the PSBTBT:PCBM NP device. [All rights reserved Elsevier].
AB - Scanning transmission X-ray microscopy (STXM) compositional mapping has been used to probe the mesomorphology of nanoparticles (NPs) synthesized from two very different polymer:fullerene blends: poly(3-hexylthiophene) (P3HT): phenyl-C61-butyric acid methyl ester (PCBM) and poly[4,8-bis(2-ethylhexyloxy)benzo(1,2-b:4,5-b')dithiophene-alt-5, 6-bis(octyloxy)-4,7-di(thiophen-2-yl)(2,1,3-benzothiadiazole)-5,5'-diyl] (PSBTBT): PCBM. The STXM data shows that both blends form core-shell NP structures with similar shell compositions, but with different polymer:fullerene ratios in the core regions. P3HT:PCBM and PSBTBT:PCBM NP organic photovoltaic (OPV) devices have been fabricated and exhibit similar device efficiencies, despite the PSBTBT being a much higher performing low band gap material. By comparing the measured NP shell and core compositions with the optimized bulk hetero-junction (BHJ) compositions, we show that the relatively higher performance of the P3HT:PCBM NP device arises from the fact that its shell composition is much closer to the optimal BHJ value than that of the PSBTBT:PCBM NP device. [All rights reserved Elsevier].
KW - Nanoparticle
KW - Morphology
KW - Organic photovoltaic
U2 - 10.1016/j.solmat.2015.02.028
DO - 10.1016/j.solmat.2015.02.028
M3 - Journal article
SN - 0927-0248
VL - 138
SP - 102
EP - 108
JO - Solar Energy Materials and Solar Cells
JF - Solar Energy Materials and Solar Cells
ER -