The e-ASTROGAM mission: Exploring the extreme Universe with gamma rays in the MeV – GeV range

A. De Angelis*, V. Tatischeff, M. Tavani, U. Oberlack, I. Grenier, L. Hanlon, R. Walter, A. Argan, P. von Ballmoos, A. Bulgarelli, I. Donnarumma, M. Hernanz, I. Kuvvetli, M. Pearce, A. Zdziarski, A. Aboudan, M. Ajello, G. Ambrosi, D. Bernard, E. BernardiniV. Bonvicini, A. Brogna, M. Branchesi, C. Budtz-Jorgensen, A. Bykov, R. Campana, M. Cardillo, P. Coppi, D. De Martino, R. Diehl, M. Doro, V. Fioretti, S. Funk, G. Ghisellini, E. Grove, C. Hamadache, D. H. Hartmann, M. Hayashida, J. Isern, G. Kanbach, J. Kiener, J. Knödlseder, C. Labanti, P. Laurent, O. Limousin, F. Longo, K. Mannheim, M. Marisaldi, M. Martinez, M. N. Mazziotta, J. McEnery, S. Mereghetti, G. Minervini, A. Moiseev, A. Morselli, K. Nakazawa, P. Orleanski, J. M. Paredes, B. Patricelli, J. Peyré, G. Piano, M. Pohl, H. Ramarijaona, R. Rando, I. Reichardt, M. Roncadelli, R. Silva, F. Tavecchio, D. J. Thompson, R. Turolla, A. Ulyanov, A. Vacchi, X. Wu, A. Zoglauer

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

e-ASTROGAM (‘enhanced ASTROGAM’) is a breakthrough Observatory space mission, with a detector composed by a Silicon tracker, a calorimeter, and an anticoincidence system, dedicated to the study of the non-thermal Universe in the photon energy range from 0.3 MeV to 3 GeV – the lower energy limit can be pushed to energies as low as 150 keV, albeit with rapidly degrading angular resolution, for the tracker, and to 30 keV for calorimetric detection. The mission is based on an advanced space-proven detector technology, with unprecedented sensitivity, angular and energy resolution, combined with polarimetric capability. Thanks to its performance in the MeV-GeV domain, substantially improving its predecessors, e-ASTROGAM will open a new window on the non-thermal Universe, making pioneering observations of the most powerful Galactic and extragalactic sources, elucidating the nature of their relativistic outflows and their effects on the surroundings. With a line sensitivity in the MeV energy range one to two orders of magnitude better than previous generation instruments, e-ASTROGAM will determine the origin of key isotopes fundamental for the understanding of supernova explosion and the chemical evolution of our Galaxy. The mission will provide unique data of significant interest to a broad astronomical community, complementary to powerful observatories such as LIGO-Virgo-GEO600-KAGRA, SKA, ALMA, E-ELT, TMT, LSST, JWST, Athena, CTA, IceCube, KM3NeT, and the promise of eLISA.

Original languageEnglish
JournalExperimental Astronomy
Volume44
Issue number1
Pages (from-to)25-82
ISSN0922-6435
DOIs
Publication statusPublished - 2017

Keywords

  • Active Galactic Nuclei
  • Compton and Pair Creation Telescope
  • Cosmic Antimatter
  • Cosmic Rays
  • Counterparts of gravitational waves
  • Dark Matter
  • Early Universe
  • Fermi
  • Gamma-Ray Bursts
  • High-Energy Astrophysics
  • High-Energy Gamma-Ray Astronomy
  • Jets
  • Multiwavelength Observations of the Universe
  • Nuclear Astrophysics
  • Nucleosynthesis
  • Outflows
  • Supernovae

Cite this

De Angelis, A., Tatischeff, V., Tavani, M., Oberlack, U., Grenier, I., Hanlon, L., ... Zoglauer, A. (2017). The e-ASTROGAM mission: Exploring the extreme Universe with gamma rays in the MeV – GeV range. Experimental Astronomy, 44(1), 25-82. https://doi.org/10.1007/s10686-017-9533-6
De Angelis, A. ; Tatischeff, V. ; Tavani, M. ; Oberlack, U. ; Grenier, I. ; Hanlon, L. ; Walter, R. ; Argan, A. ; von Ballmoos, P. ; Bulgarelli, A. ; Donnarumma, I. ; Hernanz, M. ; Kuvvetli, I. ; Pearce, M. ; Zdziarski, A. ; Aboudan, A. ; Ajello, M. ; Ambrosi, G. ; Bernard, D. ; Bernardini, E. ; Bonvicini, V. ; Brogna, A. ; Branchesi, M. ; Budtz-Jorgensen, C. ; Bykov, A. ; Campana, R. ; Cardillo, M. ; Coppi, P. ; De Martino, D. ; Diehl, R. ; Doro, M. ; Fioretti, V. ; Funk, S. ; Ghisellini, G. ; Grove, E. ; Hamadache, C. ; Hartmann, D. H. ; Hayashida, M. ; Isern, J. ; Kanbach, G. ; Kiener, J. ; Knödlseder, J. ; Labanti, C. ; Laurent, P. ; Limousin, O. ; Longo, F. ; Mannheim, K. ; Marisaldi, M. ; Martinez, M. ; Mazziotta, M. N. ; McEnery, J. ; Mereghetti, S. ; Minervini, G. ; Moiseev, A. ; Morselli, A. ; Nakazawa, K. ; Orleanski, P. ; Paredes, J. M. ; Patricelli, B. ; Peyré, J. ; Piano, G. ; Pohl, M. ; Ramarijaona, H. ; Rando, R. ; Reichardt, I. ; Roncadelli, M. ; Silva, R. ; Tavecchio, F. ; Thompson, D. J. ; Turolla, R. ; Ulyanov, A. ; Vacchi, A. ; Wu, X. ; Zoglauer, A. / The e-ASTROGAM mission: Exploring the extreme Universe with gamma rays in the MeV – GeV range. In: Experimental Astronomy. 2017 ; Vol. 44, No. 1. pp. 25-82.
@article{3fe364bc62b540f59db0d200f8055522,
title = "The e-ASTROGAM mission: Exploring the extreme Universe with gamma rays in the MeV – GeV range",
abstract = "e-ASTROGAM (‘enhanced ASTROGAM’) is a breakthrough Observatory space mission, with a detector composed by a Silicon tracker, a calorimeter, and an anticoincidence system, dedicated to the study of the non-thermal Universe in the photon energy range from 0.3 MeV to 3 GeV – the lower energy limit can be pushed to energies as low as 150 keV, albeit with rapidly degrading angular resolution, for the tracker, and to 30 keV for calorimetric detection. The mission is based on an advanced space-proven detector technology, with unprecedented sensitivity, angular and energy resolution, combined with polarimetric capability. Thanks to its performance in the MeV-GeV domain, substantially improving its predecessors, e-ASTROGAM will open a new window on the non-thermal Universe, making pioneering observations of the most powerful Galactic and extragalactic sources, elucidating the nature of their relativistic outflows and their effects on the surroundings. With a line sensitivity in the MeV energy range one to two orders of magnitude better than previous generation instruments, e-ASTROGAM will determine the origin of key isotopes fundamental for the understanding of supernova explosion and the chemical evolution of our Galaxy. The mission will provide unique data of significant interest to a broad astronomical community, complementary to powerful observatories such as LIGO-Virgo-GEO600-KAGRA, SKA, ALMA, E-ELT, TMT, LSST, JWST, Athena, CTA, IceCube, KM3NeT, and the promise of eLISA.",
keywords = "Active Galactic Nuclei, Compton and Pair Creation Telescope, Cosmic Antimatter, Cosmic Rays, Counterparts of gravitational waves, Dark Matter, Early Universe, Fermi, Gamma-Ray Bursts, High-Energy Astrophysics, High-Energy Gamma-Ray Astronomy, Jets, Multiwavelength Observations of the Universe, Nuclear Astrophysics, Nucleosynthesis, Outflows, Supernovae",
author = "{De Angelis}, A. and V. Tatischeff and M. Tavani and U. Oberlack and I. Grenier and L. Hanlon and R. Walter and A. Argan and {von Ballmoos}, P. and A. Bulgarelli and I. Donnarumma and M. Hernanz and I. Kuvvetli and M. Pearce and A. Zdziarski and A. Aboudan and M. Ajello and G. Ambrosi and D. Bernard and E. Bernardini and V. Bonvicini and A. Brogna and M. Branchesi and C. Budtz-Jorgensen and A. Bykov and R. Campana and M. Cardillo and P. Coppi and {De Martino}, D. and R. Diehl and M. Doro and V. Fioretti and S. Funk and G. Ghisellini and E. Grove and C. Hamadache and Hartmann, {D. H.} and M. Hayashida and J. Isern and G. Kanbach and J. Kiener and J. Kn{\"o}dlseder and C. Labanti and P. Laurent and O. Limousin and F. Longo and K. Mannheim and M. Marisaldi and M. Martinez and Mazziotta, {M. N.} and J. McEnery and S. Mereghetti and G. Minervini and A. Moiseev and A. Morselli and K. Nakazawa and P. Orleanski and Paredes, {J. M.} and B. Patricelli and J. Peyr{\'e} and G. Piano and M. Pohl and H. Ramarijaona and R. Rando and I. Reichardt and M. Roncadelli and R. Silva and F. Tavecchio and Thompson, {D. J.} and R. Turolla and A. Ulyanov and A. Vacchi and X. Wu and A. Zoglauer",
year = "2017",
doi = "10.1007/s10686-017-9533-6",
language = "English",
volume = "44",
pages = "25--82",
journal = "Experimental Astronomy",
issn = "0922-6435",
publisher = "Springer Netherlands",
number = "1",

}

De Angelis, A, Tatischeff, V, Tavani, M, Oberlack, U, Grenier, I, Hanlon, L, Walter, R, Argan, A, von Ballmoos, P, Bulgarelli, A, Donnarumma, I, Hernanz, M, Kuvvetli, I, Pearce, M, Zdziarski, A, Aboudan, A, Ajello, M, Ambrosi, G, Bernard, D, Bernardini, E, Bonvicini, V, Brogna, A, Branchesi, M, Budtz-Jorgensen, C, Bykov, A, Campana, R, Cardillo, M, Coppi, P, De Martino, D, Diehl, R, Doro, M, Fioretti, V, Funk, S, Ghisellini, G, Grove, E, Hamadache, C, Hartmann, DH, Hayashida, M, Isern, J, Kanbach, G, Kiener, J, Knödlseder, J, Labanti, C, Laurent, P, Limousin, O, Longo, F, Mannheim, K, Marisaldi, M, Martinez, M, Mazziotta, MN, McEnery, J, Mereghetti, S, Minervini, G, Moiseev, A, Morselli, A, Nakazawa, K, Orleanski, P, Paredes, JM, Patricelli, B, Peyré, J, Piano, G, Pohl, M, Ramarijaona, H, Rando, R, Reichardt, I, Roncadelli, M, Silva, R, Tavecchio, F, Thompson, DJ, Turolla, R, Ulyanov, A, Vacchi, A, Wu, X & Zoglauer, A 2017, 'The e-ASTROGAM mission: Exploring the extreme Universe with gamma rays in the MeV – GeV range', Experimental Astronomy, vol. 44, no. 1, pp. 25-82. https://doi.org/10.1007/s10686-017-9533-6

The e-ASTROGAM mission: Exploring the extreme Universe with gamma rays in the MeV – GeV range. / De Angelis, A.; Tatischeff, V.; Tavani, M.; Oberlack, U.; Grenier, I.; Hanlon, L.; Walter, R.; Argan, A.; von Ballmoos, P.; Bulgarelli, A.; Donnarumma, I.; Hernanz, M.; Kuvvetli, I.; Pearce, M.; Zdziarski, A.; Aboudan, A.; Ajello, M.; Ambrosi, G.; Bernard, D.; Bernardini, E.; Bonvicini, V.; Brogna, A.; Branchesi, M.; Budtz-Jorgensen, C.; Bykov, A.; Campana, R.; Cardillo, M.; Coppi, P.; De Martino, D.; Diehl, R.; Doro, M.; Fioretti, V.; Funk, S.; Ghisellini, G.; Grove, E.; Hamadache, C.; Hartmann, D. H.; Hayashida, M.; Isern, J.; Kanbach, G.; Kiener, J.; Knödlseder, J.; Labanti, C.; Laurent, P.; Limousin, O.; Longo, F.; Mannheim, K.; Marisaldi, M.; Martinez, M.; Mazziotta, M. N.; McEnery, J.; Mereghetti, S.; Minervini, G.; Moiseev, A.; Morselli, A.; Nakazawa, K.; Orleanski, P.; Paredes, J. M.; Patricelli, B.; Peyré, J.; Piano, G.; Pohl, M.; Ramarijaona, H.; Rando, R.; Reichardt, I.; Roncadelli, M.; Silva, R.; Tavecchio, F.; Thompson, D. J.; Turolla, R.; Ulyanov, A.; Vacchi, A.; Wu, X.; Zoglauer, A.

In: Experimental Astronomy, Vol. 44, No. 1, 2017, p. 25-82.

Research output: Contribution to journalJournal articleResearchpeer-review

TY - JOUR

T1 - The e-ASTROGAM mission: Exploring the extreme Universe with gamma rays in the MeV – GeV range

AU - De Angelis, A.

AU - Tatischeff, V.

AU - Tavani, M.

AU - Oberlack, U.

AU - Grenier, I.

AU - Hanlon, L.

AU - Walter, R.

AU - Argan, A.

AU - von Ballmoos, P.

AU - Bulgarelli, A.

AU - Donnarumma, I.

AU - Hernanz, M.

AU - Kuvvetli, I.

AU - Pearce, M.

AU - Zdziarski, A.

AU - Aboudan, A.

AU - Ajello, M.

AU - Ambrosi, G.

AU - Bernard, D.

AU - Bernardini, E.

AU - Bonvicini, V.

AU - Brogna, A.

AU - Branchesi, M.

AU - Budtz-Jorgensen, C.

AU - Bykov, A.

AU - Campana, R.

AU - Cardillo, M.

AU - Coppi, P.

AU - De Martino, D.

AU - Diehl, R.

AU - Doro, M.

AU - Fioretti, V.

AU - Funk, S.

AU - Ghisellini, G.

AU - Grove, E.

AU - Hamadache, C.

AU - Hartmann, D. H.

AU - Hayashida, M.

AU - Isern, J.

AU - Kanbach, G.

AU - Kiener, J.

AU - Knödlseder, J.

AU - Labanti, C.

AU - Laurent, P.

AU - Limousin, O.

AU - Longo, F.

AU - Mannheim, K.

AU - Marisaldi, M.

AU - Martinez, M.

AU - Mazziotta, M. N.

AU - McEnery, J.

AU - Mereghetti, S.

AU - Minervini, G.

AU - Moiseev, A.

AU - Morselli, A.

AU - Nakazawa, K.

AU - Orleanski, P.

AU - Paredes, J. M.

AU - Patricelli, B.

AU - Peyré, J.

AU - Piano, G.

AU - Pohl, M.

AU - Ramarijaona, H.

AU - Rando, R.

AU - Reichardt, I.

AU - Roncadelli, M.

AU - Silva, R.

AU - Tavecchio, F.

AU - Thompson, D. J.

AU - Turolla, R.

AU - Ulyanov, A.

AU - Vacchi, A.

AU - Wu, X.

AU - Zoglauer, A.

PY - 2017

Y1 - 2017

N2 - e-ASTROGAM (‘enhanced ASTROGAM’) is a breakthrough Observatory space mission, with a detector composed by a Silicon tracker, a calorimeter, and an anticoincidence system, dedicated to the study of the non-thermal Universe in the photon energy range from 0.3 MeV to 3 GeV – the lower energy limit can be pushed to energies as low as 150 keV, albeit with rapidly degrading angular resolution, for the tracker, and to 30 keV for calorimetric detection. The mission is based on an advanced space-proven detector technology, with unprecedented sensitivity, angular and energy resolution, combined with polarimetric capability. Thanks to its performance in the MeV-GeV domain, substantially improving its predecessors, e-ASTROGAM will open a new window on the non-thermal Universe, making pioneering observations of the most powerful Galactic and extragalactic sources, elucidating the nature of their relativistic outflows and their effects on the surroundings. With a line sensitivity in the MeV energy range one to two orders of magnitude better than previous generation instruments, e-ASTROGAM will determine the origin of key isotopes fundamental for the understanding of supernova explosion and the chemical evolution of our Galaxy. The mission will provide unique data of significant interest to a broad astronomical community, complementary to powerful observatories such as LIGO-Virgo-GEO600-KAGRA, SKA, ALMA, E-ELT, TMT, LSST, JWST, Athena, CTA, IceCube, KM3NeT, and the promise of eLISA.

AB - e-ASTROGAM (‘enhanced ASTROGAM’) is a breakthrough Observatory space mission, with a detector composed by a Silicon tracker, a calorimeter, and an anticoincidence system, dedicated to the study of the non-thermal Universe in the photon energy range from 0.3 MeV to 3 GeV – the lower energy limit can be pushed to energies as low as 150 keV, albeit with rapidly degrading angular resolution, for the tracker, and to 30 keV for calorimetric detection. The mission is based on an advanced space-proven detector technology, with unprecedented sensitivity, angular and energy resolution, combined with polarimetric capability. Thanks to its performance in the MeV-GeV domain, substantially improving its predecessors, e-ASTROGAM will open a new window on the non-thermal Universe, making pioneering observations of the most powerful Galactic and extragalactic sources, elucidating the nature of their relativistic outflows and their effects on the surroundings. With a line sensitivity in the MeV energy range one to two orders of magnitude better than previous generation instruments, e-ASTROGAM will determine the origin of key isotopes fundamental for the understanding of supernova explosion and the chemical evolution of our Galaxy. The mission will provide unique data of significant interest to a broad astronomical community, complementary to powerful observatories such as LIGO-Virgo-GEO600-KAGRA, SKA, ALMA, E-ELT, TMT, LSST, JWST, Athena, CTA, IceCube, KM3NeT, and the promise of eLISA.

KW - Active Galactic Nuclei

KW - Compton and Pair Creation Telescope

KW - Cosmic Antimatter

KW - Cosmic Rays

KW - Counterparts of gravitational waves

KW - Dark Matter

KW - Early Universe

KW - Fermi

KW - Gamma-Ray Bursts

KW - High-Energy Astrophysics

KW - High-Energy Gamma-Ray Astronomy

KW - Jets

KW - Multiwavelength Observations of the Universe

KW - Nuclear Astrophysics

KW - Nucleosynthesis

KW - Outflows

KW - Supernovae

U2 - 10.1007/s10686-017-9533-6

DO - 10.1007/s10686-017-9533-6

M3 - Journal article

AN - SCOPUS:85020108036

VL - 44

SP - 25

EP - 82

JO - Experimental Astronomy

JF - Experimental Astronomy

SN - 0922-6435

IS - 1

ER -