TY - JOUR
T1 - The determinant role of fabrication technique in final characteristics of scaffolds for tissue engineering applications
T2 - A focus on silk fibroin-based scaffolds
AU - Khademolqorani, Sanaz
AU - Tavanai, Hossein
AU - Chronakis, Ioannis S.
AU - Boisen, Anja
AU - Ajalloueian, Fatemeh
PY - 2021
Y1 - 2021
N2 - 3D scaffolds are in the center of attention for tissue engineering applications. Whilst many studies have focused on the biological properties of scaffolds, less attention has been paid to meeting the biomechanics of the target tissues. In this work, we show how using the same original biomaterial, but different fabrication techniques can lead to a broad range of structural, mechanical, and biological characteristics. Starting with silk fibroin filament as our base biomaterial, we employed electrospinning, film casting, and weft knitting as different scaffold fabrication techniques. Among these three, the weft knit scaffold showed outstanding cell-scaffold interaction including full 3D cell attachment, complete cell coverage around individual filaments, and in-depth cell infiltration. Post-fabrication degumming of silk filament yarns resulted in more bulky and less open pores for the silk fibroin knit scaffold. The decreased pore size after degumming of knit scaffold alleviated the need to in-advance pore filling (a requisite for increasing cell adhesion in a typical knit scaffold having big pores). From a mechanical viewpoint, the weft knit scaffold shows the highest mechanical strength alongside with far better extensibility. Interestingly, the silk filament weft knit scaffold (in the course direction) was 100 and 1000 times more compliant than silk fibroin film and electrospun web, respectively. The observed effect of material type and fabrication technique highlights the suitability of silk fibroin weft-knit scaffolds for the regeneration of load-bearing soft tissues such as urine bladder.
AB - 3D scaffolds are in the center of attention for tissue engineering applications. Whilst many studies have focused on the biological properties of scaffolds, less attention has been paid to meeting the biomechanics of the target tissues. In this work, we show how using the same original biomaterial, but different fabrication techniques can lead to a broad range of structural, mechanical, and biological characteristics. Starting with silk fibroin filament as our base biomaterial, we employed electrospinning, film casting, and weft knitting as different scaffold fabrication techniques. Among these three, the weft knit scaffold showed outstanding cell-scaffold interaction including full 3D cell attachment, complete cell coverage around individual filaments, and in-depth cell infiltration. Post-fabrication degumming of silk filament yarns resulted in more bulky and less open pores for the silk fibroin knit scaffold. The decreased pore size after degumming of knit scaffold alleviated the need to in-advance pore filling (a requisite for increasing cell adhesion in a typical knit scaffold having big pores). From a mechanical viewpoint, the weft knit scaffold shows the highest mechanical strength alongside with far better extensibility. Interestingly, the silk filament weft knit scaffold (in the course direction) was 100 and 1000 times more compliant than silk fibroin film and electrospun web, respectively. The observed effect of material type and fabrication technique highlights the suitability of silk fibroin weft-knit scaffolds for the regeneration of load-bearing soft tissues such as urine bladder.
KW - Biological properties
KW - Cell culture
KW - Mechanical properties
KW - Silk fibroin scaffold
KW - Tissue engineering
KW - Weft knitting
U2 - 10.1016/j.msec.2021.111867
DO - 10.1016/j.msec.2021.111867
M3 - Journal article
C2 - 33641889
AN - SCOPUS:85100007836
SN - 0928-4931
VL - 122
JO - Materials Science and Engineering C
JF - Materials Science and Engineering C
M1 - 111867
ER -