TY - CHAP
T1 - The Deposition and Control of self Assembled Silicon nano Islands on Crystalline Silicon
AU - Kiebach, Wolff-Ragnar
AU - Yu, Zhenrui
AU - Aceves-Mijares, Mariano
AU - Bian, Dongcai
AU - Du, Jinhui
PY - 2009
Y1 - 2009
N2 - The formation of nano sized Si structures during the annealing of silicon rich oxide (SRO) films was investigated. These films were synthesized by low pressure chemical vapor deposition (LPCVD) and used as precursors, a post-deposition thermal annealing leads to the formation of Si nano crystals in the SiO2 matrix and Si nano islands (Si nI) at c-Si/SRO interface. The influences of the excess Si concentration, the incorporation of N in the SRO precursors, and the presence of a Si concentration gradient on the Si nI formation were studied. Additionally the influence of pre-deposition substrate surface treatments on the island formation was investigated. Therefore, the substrate surface was mechanical scratched, producing high density of net-like scratches on the surface. Scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) were used to characterize the synthesized nano islands. Results show that above mentioned parameters have significant influences on the Si nIs. High density nanosized Si islands can epitaxially grow from the c-Si substrate. The reported method is very simple and completely compatible with Si integrated circuit technology.
AB - The formation of nano sized Si structures during the annealing of silicon rich oxide (SRO) films was investigated. These films were synthesized by low pressure chemical vapor deposition (LPCVD) and used as precursors, a post-deposition thermal annealing leads to the formation of Si nano crystals in the SiO2 matrix and Si nano islands (Si nI) at c-Si/SRO interface. The influences of the excess Si concentration, the incorporation of N in the SRO precursors, and the presence of a Si concentration gradient on the Si nI formation were studied. Additionally the influence of pre-deposition substrate surface treatments on the island formation was investigated. Therefore, the substrate surface was mechanical scratched, producing high density of net-like scratches on the surface. Scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) were used to characterize the synthesized nano islands. Results show that above mentioned parameters have significant influences on the Si nIs. High density nanosized Si islands can epitaxially grow from the c-Si substrate. The reported method is very simple and completely compatible with Si integrated circuit technology.
U2 - 10.1142/9789814273022_0013
DO - 10.1142/9789814273022_0013
M3 - Book chapter
T3 - Selected Topics in Electronics and Systems
SP - 143
EP - 152
BT - Frontiers in Electronics
PB - World Scientific
ER -