The Dalton quantum chemistry program system

Kestutis Aidas, Celestino Angeli, Keld L. Bak, Vebjorn Bakken, Radovan Bast, Linus Boman, Ove Christiansen, Renzo Cimiraglia, Sonia Coriani, Pal Dahle, Erik K. Dalskov, Ulf Ekstrom, Thomas Enevoldsen, Janus J. Eriksen, Patrick Ettenhuber, Berta Fernandez, Lara Ferrighi, Heike Fliegl, Luca Frediani, Kasper HaldAsger Halkier, Christof Hattig, Hanne Heiberg, Trygve Helgaker, Alf Christian Hennum, Hinne Hettema, Eirik Hjertenaes, Stinne Host, Ida-Marie Hoyvik, Maria Francesca Iozzi, Branislav Jansik, Hans Jorgen Aa Jensen, Dan Jonsson, Poul Jorgensen, Joanna Kauczor, Sheela Kirpekar, Thomas Kjaergaard, Wim Klopper, Stefan Knecht, Rika Kobayashi, Henrik Koch, Jacob Kongsted, Andreas Krapp, Kasper Kristensen, Andrea Ligabue, Ola B. Lutnaes, Juan I. Melo, Kurt V. Mikkelsen, Rolf H. Myhre, Christian Neiss, Christian B. Nielsen, Patrick Norman, Jeppe Olsen, Jogvan Magnus H. Olsen, Anders Osted, Martin J. Packer, Filip Pawlowski, Thomas Bachau Pedersen, Patricio F. Provasi, Simen Reine, Zilvinas Rinkevicius, Torgeir A. Ruden, Kenneth Ruud, Vladimir V. Rybkin, Pawel Salek, Claire C. M. Samson, Alfredo Sanchez de Meras, Trond Saue, Stephan P. A. Sauer, Bernd Schimmelpfennig, Kristian Sneskov, Arnfinn H. Steindal, Kristian O. Sylvester-Hvid, Peter R. Taylor, Andrew M. Teale, Erik I. Tellgren, David P. Tew, Andreas J. Thorvaldsen, Lea Thogersen, Olav Vahtras, Mark A. Watson, David J. D. Wilson, Marcin Ziolkowski, Hans Agren

Research output: Contribution to journalJournal articleResearchpeer-review

90 Downloads (Pure)

Abstract

Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree-Fock, Kohn-Sham, multiconfigurational self-consistent-field, MOller-Plesset, configuration-interaction, and coupled-cluster levels of theory. Apart from the total energy, a wide variety of molecular properties may be calculated using these electronic-structure models. Molecular gradients and Hessians are available for geometry optimizations, molecular dynamics, and vibrational studies, whereas magnetic resonance and optical activity can be studied in a gauge-origin-invariant manner. Frequency-dependent molecular properties can be calculated using linear, quadratic, and cubic response theory. A large number of singlet and triplet perturbation operators are available for the study of one-, two-, and three-photon processes. Environmental effects may be included using various dielectric-medium and quantum-mechanics/molecular-mechanics models. Large molecules may be studied using linear-scaling and massively parallel algorithms. Dalton is distributed at no cost from for a number of UNIX platforms.
Original languageEnglish
JournalWiley Interdisciplinary Reviews: Computational Molecular Science
Volume4
Issue number3
Pages (from-to)269-284
Number of pages16
ISSN1759-0884
DOIs
Publication statusPublished - 2014
Externally publishedYes

Bibliographical note

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Cite this

Aidas, K., Angeli, C., Bak, K. L., Bakken, V., Bast, R., Boman, L., Christiansen, O., Cimiraglia, R., Coriani, S., Dahle, P., Dalskov, E. K., Ekstrom, U., Enevoldsen, T., Eriksen, J. J., Ettenhuber, P., Fernandez, B., Ferrighi, L., Fliegl, H., Frediani, L., ... Agren, H. (2014). The Dalton quantum chemistry program system. Wiley Interdisciplinary Reviews: Computational Molecular Science , 4(3), 269-284. https://doi.org/10.1002/wcms.1172