The Atomic Simulation Environment - A Python library for working with atoms

The Atomic Simulation Environment (ASE) is a software package written in the Python programming language with the aim of setting up, steering, and analyzing atomistic simulations. In ASE, tasks are fully scripted in Python. The powerful syntax of Python combined with the NumPy array library make it possible to perform very complex simulation tasks. For example, a sequence of calculations may be performed with the use of a simple "for-loop" construction. Calculations of energy, forces, stresses and other quantities are performed through interfaces to many external electronic structure codes or force fields using a uniform interface. On top of this calculator interface, ASE provides modules for performing many standard simulation tasks such as structure optimization, molecular dynamics, handling of constraints and performing nudged elastic band calculations.

General information
Publication status: Published
Organisations: Department of Physics, Theoretical Atomic-scale Physics, Department of Energy Conversion and Storage, Atomic Scale Materials Modelling, Department of Micro- and Nanotechnology, Theoretical Nanotechnology, University of Barcelona, University of Copenhagen, Malmö University, SINTEF, Aarhus University, Brown University, University of Wisconsin-Madison, University of Warwick, Carnegie Mellon University, Purdue University, Siminn, Karlsruhe Institute of Technology, Swiss Federal Institute of Technology Zurich, University of Freiburg
Number of pages: 30
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Journal of Physics: Condensed Matter
Volume: 29
Article number: 273002
ISSN (Print): 0953-8984
Ratings:
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.37 SJR 0.875 SNIP 0.948
Web of Science (2017): Impact factor 2.617
Web of Science (2017): Indexed yes
Original language: English
Keywords: Density functional theory, Molecular dynamics, Electronic structure theory
Electronic versions:
main.pdf. Embargo ended: 23/03/2018
DOIs:
10.1088/1361-648X/aa680e
Source: FindIt
Source ID: 2355598621
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review