Testing spatial heterogeneity with stock assessment models

Research output: Contribution to journalJournal article – Annual report year: 2018Researchpeer-review

Documents

DOI

  • Author: Jardim, Ernesto

    European Commission Joint Research Centre Institute, Italy

  • Author: Eero, Margit

    Section for Ecosystem based Marine Management, National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, 2800, Kgs. Lyngby, Denmark

  • Author: Silva, Alexandra

    Instituto Português do Mar e da Atmosfera, Portugal

  • Author: Ulrich, Clara

    Section for Ecosystem based Marine Management, National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, 2800, Kgs. Lyngby, Denmark

  • Author: Pawlowski, Lionel

    L'Institut Français de Recherche pour l'Exploitation de la Mer, France

  • Author: Holmes, Steven J.

    European Commission Joint Research Centre Institute, Italy

  • Author: Ibaibarriaga, Leire

    AZTI Technalia, Spain

  • Author: de Oliveira, Jose A.A.

    Cefas Weymouth Laboratory, United Kingdom

  • Author: Riveiro, Isabel

    Instituto Español de Oceanografía, Spain

  • Author: Alzorriz, Nekane

    European Commission Joint Research Centre Institute, Italy

  • Author: Citores, Leire

    AZTI Technalia, Spain

  • Author: Scott, Finlay

    European Commission Joint Research Centre Institute, Italy

  • Author: Uriarte, Andres

    AZTI Technalia, Spain

  • Author: Carrera, Pablo

    Instituto Español de Oceanografía, Spain

  • Author: Duhamel, Erwan

    L'Institut Français de Recherche pour l'Exploitation de la Mer, France

  • Author: Mosqueira, Iago

    European Commission Joint Research Centre Institute, Italy

View graph of relations

This paper describes a methodology that combines meta-population theory and stock assessment models to gain insights about spatial heterogeneity of the meta-population in an operational time frame. The methodology was tested with stochastic simulations for different degrees of connectivity between sub-populations and applied to two case studies, North Sea cod (Gadus morua) and Northeast Atlantic sardine (Sardina pilchardus). Considering that the biological components of a population can be partitioned into discrete spatial units, we extended this idea into a property of additivity of sub-population abundances. If the additivity results hold true for putative sub-populations, then assessment results based on sub-populations will provide information to develop and monitor the implementation of finer scale/local management. The simulation study confirmed that when sub-populations are independent and not too heterogeneous with regards to productivity, the sum of stock assessment model estimates of sub-populations' SSB is similar to the SSB estimates of the meta-population. It also showed that a strong diffusion process can be detected and that the stronger the connection between SSB and recruitment, the better the diffusion process will be detected. On the other hand it showed that weak to moderate diffusion processes are not easy to identify and large differences between sub-populations productivities may be confounded with weak diffusion processes. The application to North Sea cod and Atlantic sardine exemplified how much insight can be gained. In both cases the results obtained were sufficiently robust to support the regional analysis.
Original languageEnglish
Article numbere0190791
JournalP L o S One
Volume13
Issue number1
ISSN1932-6203
DOIs
Publication statusPublished - 2018
CitationsWeb of Science® Times Cited: No match on DOI

Download statistics

No data available

ID: 142937190