Ten questions concerning green buildings and indoor air quality

This paper investigates the concern that green buildings may promote energy efficiency and other aspects of sustainability, but not necessarily the health and well-being of occupants through better indoor air quality (IAQ). We ask ten questions to explore IAQ challenges for green buildings as well as opportunities to improve IAQ within green buildings and their programs. Our focus is on IAQ, while recognizing that many factors influence human health and the healthfulness of a building. We begin with an overview of green buildings, IAQ, and whether and how green building certifications address IAQ. Next, we examine evidence on whether green buildings have better IAQ than comparable conventional buildings. Then, we identify so-called green practices and green products that can have unintended and unfavorable effects on IAQ. Looking ahead, we offer both immediate and longer-term actions, and a set of research questions, that can help green buildings to more effectively promote IAQ. This article supports a growing recognition of the importance of IAQ in green buildings, and the opportunities for improvements. As the World Green Building Council [95] and others have emphasized, people are the most valuable asset of organizations, and efforts to improve IAQ can improve health, well-being, productivity, and profitability.

General information
Publication status: Published
Organisations: Department of Civil Engineering, Section for Indoor Climate and Building Physics, University of Melbourne
Contributors: Steinemann, A., Wargocki, P., Rismanchi, B.
Number of pages: 8
Pages: 351-358
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Building and Environment
Volume: 112
ISSN (Print): 0360-1323
Ratings:
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 5.22 SJR 2.169 SNIP 2.583
Web of Science (2017): Impact factor 4.539
Web of Science (2017): Indexed yes
Original language: English
Keywords: Green buildings, Indoor air quality, Energy efficiency, Health, Volatile organic compounds (VOCs), Semi-volatile organic compounds (SVOCs)
Electronic versions:
filestore_1_.pdf
DOIs:
10.1016/j.buildenv.2016.11.010
Source: FindIt
Source ID: 2348715607
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review