Temperature-nutrient interactions exacerbate sensitivity to warming in phytoplankton

Mridul K. Thomas, María Aranguren-Gassis, Colin T. Kremer, Marilyn R. Gould, Krista Anderson, Christopher A. Klausmeier, Elena Litchman

Research output: Contribution to journalJournal articleResearchpeer-review


Temperature and nutrients are fundamental, highly nonlinear drivers of biological processes, but we know little about how they interact to influence growth. This has hampered attempts to model population growth and competi- tion in dynamic environments, which is critical in forecasting species distributions, as well as the diversity and pro- ductivity of communities. To address this, we propose a model of population growth that includes a new formulation of the temperature–nutrient interaction and test a novel prediction: that a species' optimum temperature for growth, Topt, is a saturating function of nutrient concentration. We find strong support for this prediction in exper- iments with a marine diatom, Thalassiosira pseudonana: Topt decreases by 3–6 °C at low nitrogen and phosphorus con- centrations. This interaction implies that species are more vulnerable to hot, low-nutrient conditions than previous models accounted for. Consequently the interaction dramatically alters species' range limits in the ocean, projected based on current temperature and nitrate levels as well as those forecast for the future. Ranges are smaller not only than projections based on the individual variables, but also than those using a simpler model of temperature–nutrient interactions. Nutrient deprivation is therefore likely to exacerbate environmental warming's effects on communities.
Original languageEnglish
JournalGlobal Change Biology
Issue number8
Pages (from-to)3269-3280
Publication statusPublished - 1 Mar 2017
Externally publishedYes


  • mechanistic species distribution model,nutrients,phytoplankton,population growth rate,r,resources,temperature,zero net growth isocline,zngi


Dive into the research topics of 'Temperature-nutrient interactions exacerbate sensitivity to warming in phytoplankton'. Together they form a unique fingerprint.

Cite this