Temperature Dependence of Charge Localization in High-Mobility, Solution-Crystallized Small Molecule Semiconductors Studied by Charge Modulation Spectroscopy

Aurélie Y. B. Meneau, Yoann Olivier, Tomas Backlund, Mark James, Dag Werner Breiby, Jens Wenzel Andreasen, Henning Sirringhaus

Research output: Contribution to journalJournal articleResearchpeer-review

310 Downloads (Pure)

Abstract

In solution-processable small molecule semiconductors, the extent of charge carrier wavefunction localization induced by dynamic disorder can be probed spectroscopically as a function of temperature using charge modulation spectroscopy (CMS). Here, it is shown based on combined fi eld-effect transistor and CMS measurements as a function of temperature that in certain molecular semiconductors, such as solution-processible pentacene, charge carriers become trapped at low temperatures in environments in which the charges become highly localized on individual molecules, while in some other molecules the charge carrier wavefunction can retain a degree of delocalization similar to what is present at room temperature. The experimental approach sheds new insight into the nature of shallow charge traps in these materials and allows identifying molecular systems in which intrinsic transport properties could, in principle, be observed at low temperatures if other transport bottlenecks associated with grain boundaries or contacts could be removed.
Original languageEnglish
JournalAdvanced Functional Materials
Volume26
Pages (from-to)2326–2333
ISSN1616-301X
DOIs
Publication statusPublished - 2016

Fingerprint

Dive into the research topics of 'Temperature Dependence of Charge Localization in High-Mobility, Solution-Crystallized Small Molecule Semiconductors Studied by Charge Modulation Spectroscopy'. Together they form a unique fingerprint.

Cite this