TY - JOUR
T1 - Technical challenges in the development of reverse genetics for a viral haemorrhagic septicaemia virus (VHSV) genotype Ib isolate: Alternative cell lines and general troubleshooting
AU - Farias Alencar, Anna Luiza
AU - Cuenca, Argelia
AU - Olesen, Niels Jørgen
AU - Rasmussen, Thomas Bruun
PY - 2021
Y1 - 2021
N2 - Several reverse genetics systems for viral haemorrhagic septicaemia virus (VHSV) have been developed over the last decade. These systems have been based on genotype Ia, IVa and IVb isolates and have used the fish cell line EPC, which is less susceptible to some VHSV isolates belonging to genotype I and genotypes II and III. While developing a reverse genetics system in our laboratories for VHSV genotype Ib, we realized that the isolate in interest (SE SVA 1033 9C) did not grow in EPC cells and it was necessary to adapt the reverse genetics protocols to the BF-2 fish cell line. This cell line is very sensitive to high temperatures and is therefore not compatible with the original protocols based on the use of recombinant vaccinia virus (vTF7-3) as a provider of the T7 RNA polymerase (T7-RNAP) to the system, which includes incubation periods at 37 °C. Transfection efficiency was assessed in BF-2 cells using a reporter plasmid and it showed to be highest when using Lipofectamine™ 3000 compared to other transfection reagents. A luciferase assay was performed to determine the optimal activity of T7-RNAP in BF-2 cells with different amounts of vTF7-3. We successfully recovered recombinant VHSV (rVHSV) in BF-2 cells by reducing the incubation time at 37 °C after transfection to both 3 and 6 hours. Another strategy we attempted successfully was to transfect mammalian BHK-21 cells, which are routinely used to propagate vTF7-3, and after the 37 °C incubation period, a BF-2 cell suspension was added hypothesizing that the virions formed in the transfected mammalian cells would infect the subsequently added fish cells at 15 °C incubation over the following days. We have successfully recovered rVHSV from both BHK-21 with a BF-2 cells suspension as well as a new protocol for VHSV reverse genetics in BF-2 cells has been established.
AB - Several reverse genetics systems for viral haemorrhagic septicaemia virus (VHSV) have been developed over the last decade. These systems have been based on genotype Ia, IVa and IVb isolates and have used the fish cell line EPC, which is less susceptible to some VHSV isolates belonging to genotype I and genotypes II and III. While developing a reverse genetics system in our laboratories for VHSV genotype Ib, we realized that the isolate in interest (SE SVA 1033 9C) did not grow in EPC cells and it was necessary to adapt the reverse genetics protocols to the BF-2 fish cell line. This cell line is very sensitive to high temperatures and is therefore not compatible with the original protocols based on the use of recombinant vaccinia virus (vTF7-3) as a provider of the T7 RNA polymerase (T7-RNAP) to the system, which includes incubation periods at 37 °C. Transfection efficiency was assessed in BF-2 cells using a reporter plasmid and it showed to be highest when using Lipofectamine™ 3000 compared to other transfection reagents. A luciferase assay was performed to determine the optimal activity of T7-RNAP in BF-2 cells with different amounts of vTF7-3. We successfully recovered recombinant VHSV (rVHSV) in BF-2 cells by reducing the incubation time at 37 °C after transfection to both 3 and 6 hours. Another strategy we attempted successfully was to transfect mammalian BHK-21 cells, which are routinely used to propagate vTF7-3, and after the 37 °C incubation period, a BF-2 cell suspension was added hypothesizing that the virions formed in the transfected mammalian cells would infect the subsequently added fish cells at 15 °C incubation over the following days. We have successfully recovered rVHSV from both BHK-21 with a BF-2 cells suspension as well as a new protocol for VHSV reverse genetics in BF-2 cells has been established.
KW - Reverse genetics
KW - Transfection
KW - Fish virus
KW - Rhabdovirus
KW - BHK-21
U2 - 10.1016/j.jviromet.2021.114132
DO - 10.1016/j.jviromet.2021.114132
M3 - Journal article
C2 - 33741408
SN - 0166-0934
VL - 292
JO - Journal of Virological Methods
JF - Journal of Virological Methods
M1 - 114132
ER -