TY - JOUR
T1 - Technical and economic feasibility of organic Rankine cycle-based waste heat recovery systems on feeder ships: Impact of nitrogen oxides emission abatement technologies
AU - Baldasso, Enrico
AU - Andreasen, Jesper Graa
AU - Mondejar, Maria E.
AU - Larsen, Ulrik
AU - Haglind, Fredrik
PY - 2019
Y1 - 2019
N2 - The International Maritime Organization recently revised the regulations concerning nitrogen and sulphur oxides emissions from commercial ships. In this context, it is important to investigate how emission abatement technologies capable of meeting the updated regulation on nitrogen oxides emissions affect the performance of waste heat recovery units to be installed on board new vessels. The objective of this paper is to assess the potential fuel savings of installing an organic Rankine cycle unit on board a hypothetical liquefied natural gas-fuelled feeder ship operating inside emission control areas. The vessel complies with the updated legislation on sulphur oxides emissions by using a dual fuel engine. Compliance with the nitrogen oxides emission regulation is reached by employing either a high or low-pressure selective catalytic reactor, or an exhaust gas recirculation unit. A multi-objective optimization was carried out where the objective functions were the organic Rankine cycle unit annual electricity production, the volume of the heat exchangers, and the net present value of the investment. The results indicate that the prospects for attaining a cost-effective installation of an organic Rankine unit are larger if the vessel is equipped with a low-pressure selective catalytic reactor or an exhaust gas recirculation unit. Moreover, the results suggest that the cost-effectiveness of the organic Rankine cycle units is highly affected by fuel price and the waste heat recovery boiler design constraints.
AB - The International Maritime Organization recently revised the regulations concerning nitrogen and sulphur oxides emissions from commercial ships. In this context, it is important to investigate how emission abatement technologies capable of meeting the updated regulation on nitrogen oxides emissions affect the performance of waste heat recovery units to be installed on board new vessels. The objective of this paper is to assess the potential fuel savings of installing an organic Rankine cycle unit on board a hypothetical liquefied natural gas-fuelled feeder ship operating inside emission control areas. The vessel complies with the updated legislation on sulphur oxides emissions by using a dual fuel engine. Compliance with the nitrogen oxides emission regulation is reached by employing either a high or low-pressure selective catalytic reactor, or an exhaust gas recirculation unit. A multi-objective optimization was carried out where the objective functions were the organic Rankine cycle unit annual electricity production, the volume of the heat exchangers, and the net present value of the investment. The results indicate that the prospects for attaining a cost-effective installation of an organic Rankine unit are larger if the vessel is equipped with a low-pressure selective catalytic reactor or an exhaust gas recirculation unit. Moreover, the results suggest that the cost-effectiveness of the organic Rankine cycle units is highly affected by fuel price and the waste heat recovery boiler design constraints.
KW - Organic Rankine cycle
KW - Waste heat recovery
KW - NO emission abatement technologies
KW - Feeder ship
KW - Multi-objective optimization
U2 - 10.1016/j.enconman.2018.12.114
DO - 10.1016/j.enconman.2018.12.114
M3 - Journal article
VL - 183
SP - 577
EP - 589
JO - Energy Conversion and Management
JF - Energy Conversion and Management
SN - 0196-8904
ER -