Teaching Power Electronics with a Design-Oriented and Project-Based Learning Method at the Technical University of Denmark

Power electronics is a fast developing technology within the electrical engineering field. This paper presents the results and experiences gained from Design Oriented Project Based Learning of switch-mode power supply design within a power electronics course at the Technical University of Denmark (DTU). Project-based learning (PBL) is known to be a motivating and problem-centered teaching method that not only places students at the core of the teaching and learning activities but also gives students the ability to transfer their acquired scientific knowledge into industrial practices. Students are asked to choose a specification from different power converter applications such as a fuel cell power conditioning converter, a light-emitting diode (LED) driver or a battery charger. Based upon their choice, the students select topology, design magnetic components, calculate input/output filters and design closed-loop controllers in order to fulfill the requirements listed in the chosen specification; thereby meeting the corresponding project’s goals. In this paper, the course teaching plan and teaching methods are introduced, the assessment method is analysed and feedback from the students is studied.

General information
Publication status: Published
Organisations: Department of Electrical Engineering, Electronics, Office for Study Programmes and Student Affairs, Department of Mechanical Engineering, Engineering Design and Product Development
Contributors: Zhang, Z., Hansen, C. T., Andersen, M. A. E.
Number of pages: 7
Pages: 32-38
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: IEEE Transactions on Education
Volume: 59
Issue number: 1
ISSN (Print): 0018-9359
Ratings:
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.73 SJR 0.891 SNIP 2.471
Web of Science (2016): Indexed yes
Original language: English
Keywords: Project-based learning, Group work, Power electronics, DC-DC converters
Electronic versions:
Teaching_Power_Electronics_revised_R3_v2_DTU_orbit.pdf
DOIs:
10.1109/TE.2015.2426674

Bibliographical note
(c) 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.
Source: PublicationPreSubmission
Source ID: 107774014
Research output: Contribution to journal › Journal article – Annual report year: 2015 › Research › peer-review