T-bet and Eomes Are Differentially Linked to the Exhausted Phenotype of CD8+ T Cells in HIV Infection - DTU Orbit (10/11/2019)

T-bet and Eomes Are Differentially Linked to the Exhausted Phenotype of CD8+ T Cells in HIV Infection

CD8+ T cell exhaustion represents a major hallmark of chronic HIV infection. Two key transcription factors governing CD8+ T cell differentiation, T-bet and Eomesodermin (Eomes), have previously been shown in mice to differentially regulate T cell exhaustion in part through direct modulation of PD-1. Here, we examined the relationship between these transcription factors and the expression of several inhibitory receptors (PD-1, CD160, and 2B4), functional characteristics and memory differentiation of CD8+ T cells in chronic and treated HIV infection. The expression of PD-1, CD160, and 2B4 on total CD8+ T cells was elevated in chronically infected individuals and highly associated with a T-betdimEomeshi expression profile. Interestingly, both resting and activated HIV-specific CD8+ T cells in chronic infection were almost exclusively T-betdimEomeshi cells, while CMV-specific CD8+ T cells displayed a balanced expression pattern of T-bet and Eomes. The T-betdimEomeshi virus-specific CD8+ T cells did not show features of terminal differentiation, but rather a transitional memory phenotype with poor polyfunctional (effector) characteristics. The transitional and exhausted phenotype of HIV-specific CD8+ T cells was longitudinally related to persistent Eomes expression after antiretroviral therapy (ART) initiation. Strikingly, these characteristics remained stable up to 10 years after ART initiation. This study supports the concept that poor human viral-specific CD8+ T cell functionality is due to an inverse expression balance between T-bet and Eomes, which is not reversed despite long-term viral control through ART. These results aid to explain the inability of HIV-specific CD8+ T cells to control the viral replication post-ART cessation.

General information
Publication status: Published
Organisations: Department of Systems Biology, Center for Biological Sequence Analysis, Immunological Bioinformatics, Karolinska Institutet, US National Institute of Health, Stockholm South General Hospital, Lund University, University of Pennsylvania
Number of pages: 15
Publication date: 2014
Peer-reviewed: Yes

Publication information
Journal: P L o S Pathogens
Volume: 10
Issue number: 7
Article number: e1004251
ISSN (Print): 1553-7366
Ratings:
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 7.67 SJR 5.324 SNIP 1.929
Web of Science (2014): Impact factor 7.562
Web of Science (2014): Indexed yes
Original language: English
Keywords: DNA and RNA Reverse Transcribing Viruses Viruses Microorganisms (DNA and RNA Reverse Transcribing Viruses, Microorganisms, Viruses) - Retroviridae [03305] HIV common Human immunodeficiency virus species pathogen, Primates Mammalia Vertebra Vertebrata Chordata Animalia (Animals, Chordates, Humans, Mammals, Vertebrates) - Hominidae [86215] human common adult, middle age host female, male, 2B4, CD160, Eomes expression, inhibitory receptors, PD-1, T-bet expression, transcription factors, 02506, Cytology - Animal, 02508, Cytology - Human, 10060, Biochemistry studies - General, 12512, Pathology - Therapy, 22002, Pharmacology - General, 22005, Pharmacology - Clinical pharmacology, 33502, Virology - General and methods, 34502, Immunology - General and methods, 34508, Immunology - Immunopathology, tissue immunology, 36006, Medical and clinical microbiology - Virology, Biochemistry and Molecular Biophysics, Clinical Immunology, Infection, Pharmacology, HIV infection human immunodeficiency virus infection viral disease, immune system disease drug therapy, viral replication, Human Medicine, Medical Sciences, CD8 positive T cell immune system, antiretroviral therapy ART therapeutic and prophylactic techniques, clinical techniques, MICROBIOLOGY, PARASITOLOGY, VIROLOGY, CHRONIC VIRAL-INFECTION, TRANSCRIPTION FACTOR EOMESODERMIN, HIGHLY PATHOGENIC SIV, C VIRUS-INFECTION, DISEASE PROGRESSION, PD-1 EXPRESSION , CUTTING EDGE, EFFECTOR FUNCTION, MEMORY, IMMUNE
Electronic versions:
T_bet_and_Eomes_Are_Differentially_Linked.pdf
DOIs:
10.1371/journal.ppat.1004251

Bibliographical note
This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for
any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
Source: FindIt
Source ID: 269328280
Research output: Contribution to journal › Journal article – Annual report year: 2014 › Research › peer-review