Abstract
Distributed control strategies applied to power distribution control problems are meant to offer robust and scalable integration of distributed energy resources (DER). However, the term “distributed control” is often loosely applied to a variety of very different control strategies. In particular there is a lack of discrimination between aspects related to communication topology, physical distribution of components and associated control objectives. This has lead to a lack of objective criteria for performance comparison and general quality assessment of state of the art distributed control solutions. For such comparison, a classification is required that is consistent across the different aspects mentioned above. This paper develops systematic categories of control strategies that accounts for communication, control and physical distribution aspects of the problem, and provides a set of criteria that can be assessed for these categories. The proposed taxonomy is applied to the state of the art as part of a review of existing work on distributed control of DER. Finally, we demonstrate the applicability and usefulness of the proposed classification to researchers and system designers
Original language | English |
---|---|
Journal | IEEE Transactions on Smart Grid |
Volume | 9 |
Issue number | 5 |
Pages (from-to) | 5185 - 5195 |
ISSN | 1949-3053 |
DOIs | |
Publication status | Published - 2017 |
Bibliographical note
(c) 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Keywords
- Distributed Energy Resource
- Distributed control
- Classification
- Control architecture
- Smart grid