TY - JOUR
T1 - TaS2 back contact improving oxide-converted Cu2BaSnS4 solar cells
AU - Crovetto, Andrea
AU - Børsting, Kristine
AU - Nielsen, Rasmus
AU - Hajijafarassar, Alireza
AU - Hansen, Ole
AU - Seger, Brian
AU - Chorkendorff, Ib
AU - Vesborg, Peter C.K.
PY - 2020
Y1 - 2020
N2 - Solar cells based on the wide band-gap Cu2BaSnS4 (CBTS) photoabsorber have achieved open circuit voltages up to 1.1 V over a short development period, making CBTS an attractive material for tandem photovoltaic and photoelectrochemical cells. In this work, we explore an alternative CBTS growth route based on oxide precursors, and we propose TaS2 as an alternative back contact material to the commonly used Mo/MoS2. The oxide precursor route does not require higher sulfurization temperatures than other more common fabrication routes, and it yields CBTS films with negligible Stokes shift between photoluminescence maximum and band gap energy, while at the same time avoiding sulfur contamination of vacuum systems. The high work-function metallic TaS2 compound is selected as a prospective hole-selective contact, which could also prevent the losses associated with carrier transport across the semiconducting MoS2 layer. By comparing CBTS solar cells with Mo and TaS2 back contacts, the latter shows a significantly lower series resistance, resulting in a 10% relative efficiency improvement. Finally, we fabricate a proof-of-concept monolithic CBTS/Si tandem cell using a thin Ti(O,N) interlayer intended both as a diffusion barrier and as a recombination layer between the two subcells.
AB - Solar cells based on the wide band-gap Cu2BaSnS4 (CBTS) photoabsorber have achieved open circuit voltages up to 1.1 V over a short development period, making CBTS an attractive material for tandem photovoltaic and photoelectrochemical cells. In this work, we explore an alternative CBTS growth route based on oxide precursors, and we propose TaS2 as an alternative back contact material to the commonly used Mo/MoS2. The oxide precursor route does not require higher sulfurization temperatures than other more common fabrication routes, and it yields CBTS films with negligible Stokes shift between photoluminescence maximum and band gap energy, while at the same time avoiding sulfur contamination of vacuum systems. The high work-function metallic TaS2 compound is selected as a prospective hole-selective contact, which could also prevent the losses associated with carrier transport across the semiconducting MoS2 layer. By comparing CBTS solar cells with Mo and TaS2 back contacts, the latter shows a significantly lower series resistance, resulting in a 10% relative efficiency improvement. Finally, we fabricate a proof-of-concept monolithic CBTS/Si tandem cell using a thin Ti(O,N) interlayer intended both as a diffusion barrier and as a recombination layer between the two subcells.
U2 - 10.1021/acsaem.9b02251
DO - 10.1021/acsaem.9b02251
M3 - Journal article
SN - 2574-0962
VL - 3
SP - 1190
EP - 1198
JO - Applied Energy Materials
JF - Applied Energy Materials
IS - 1
ER -