TY - JOUR
T1 - Targeted knockdown of ATM, ATR, and PDEδ increases Gag HIV-1 VLP production in HEK293 cells
AU - Díaz-Maneh, Andy
AU - Pérez-Rubio, Pol
AU - Granes, Cristina Rigau
AU - Bosch-Molist, Laia
AU - Lavado-García, Jesús
AU - Gòdia, Francesc
AU - Cervera, Laura
N1 - Publisher Copyright:
© The Author(s) 2024.
PY - 2025
Y1 - 2025
N2 - Abstract: Several strategies have been developed in recent years to improve virus-like particle (VLP)-based vaccine production processes. Among these, the metabolic engineering of cell lines has been one of the most promising approaches. Based on previous work and a proteomic analysis of HEK293 cells producing Human Immunodeficiency Virus-1 (HIV-1) Gag VLPs under transient transfection, four proteins susceptible of enhancing VLP production were identified: ataxia telangiectasia mutated (ATM), ataxia telangiectasia and rad3-related (ATR), DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and retinal rod rhodopsin-sensitive cGMP 3',5'-cyclic phosphodiesterase subunit delta (PDEδ). The knockdown of ATM, ATR, and PDEδ in HEK293 cells increased HIV-1 VLP titers in the supernatant by 3.4-, 2.1-, and 2.2-fold, respectively. Also, possible metabolic synergies between plasmids were investigated by statistical design of experiments (DoE), enabling us to identify the optimal production strategy, that was further demonstrated at lab-scale stirred tank bioreactor operated in perfusion, significantly increasing both VLPs specific and volumetric productivities to 8.3 × 103 VLPs/cellxday and 7.5 × 1012 VLPs/Lxday, respectively. Key points: • ATM, ATR, and PDEδ knockdowns increased VLP production in HEK293 cells. • Knockdown of ATM increased budding efficiency and extracellular vesicle concentration. • ATM knockdown could be intensified to bioreactor scale operated in perfusion.
AB - Abstract: Several strategies have been developed in recent years to improve virus-like particle (VLP)-based vaccine production processes. Among these, the metabolic engineering of cell lines has been one of the most promising approaches. Based on previous work and a proteomic analysis of HEK293 cells producing Human Immunodeficiency Virus-1 (HIV-1) Gag VLPs under transient transfection, four proteins susceptible of enhancing VLP production were identified: ataxia telangiectasia mutated (ATM), ataxia telangiectasia and rad3-related (ATR), DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and retinal rod rhodopsin-sensitive cGMP 3',5'-cyclic phosphodiesterase subunit delta (PDEδ). The knockdown of ATM, ATR, and PDEδ in HEK293 cells increased HIV-1 VLP titers in the supernatant by 3.4-, 2.1-, and 2.2-fold, respectively. Also, possible metabolic synergies between plasmids were investigated by statistical design of experiments (DoE), enabling us to identify the optimal production strategy, that was further demonstrated at lab-scale stirred tank bioreactor operated in perfusion, significantly increasing both VLPs specific and volumetric productivities to 8.3 × 103 VLPs/cellxday and 7.5 × 1012 VLPs/Lxday, respectively. Key points: • ATM, ATR, and PDEδ knockdowns increased VLP production in HEK293 cells. • Knockdown of ATM increased budding efficiency and extracellular vesicle concentration. • ATM knockdown could be intensified to bioreactor scale operated in perfusion.
KW - ATM
KW - HEK293
KW - ShRNA
KW - Transfection
KW - VLP
U2 - 10.1007/s00253-024-13389-8
DO - 10.1007/s00253-024-13389-8
M3 - Journal article
C2 - 39747723
AN - SCOPUS:85214204299
SN - 0175-7598
VL - 109
JO - Applied Microbiology and Biotechnology
JF - Applied Microbiology and Biotechnology
IS - 1
M1 - 1
ER -