Systems biology solutions for biochemical production challenges

There is an urgent need to significantly accelerate the development of microbial cell factories to produce fuels and chemicals from renewable feedstocks in order to facilitate the transition to a biobased society. Methods commonly used within the field of systems biology including omics characterization, genome-scale metabolic modeling, and adaptive laboratory evolution can be readily deployed in metabolic engineering projects. However, high performance strains usually carry tens of genetic modifications and need to operate in challenging environmental conditions. This additional complexity compared to basic science research requires pushing systems biology strategies to their limits and often spurs innovative developments that benefit fields outside metabolic engineering. Here we survey recent advanced applications of systems biology methods in engineering microbial production strains for biofuels and chemicals.

General information
Publication status: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, iLoop, Synthetic Biology Tools for Yeast, Research Groups, Global Econometric Modeling
Contributors: Hansen, A. S. L., Lennen, R. M., Sonnenschein, N., Herrgard, M.
Pages: 85-91
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Current Opinion in Biotechnology
Volume: 45
ISSN (Print): 0958-1669
Ratings:
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 8.45 SJR 3.202 SNIP 2.231
Web of Science (2017): Impact factor 8.38
Web of Science (2017): Indexed yes
Original language: English
Electronic versions:
1_s2.0_S095816691630204X_main.pdf
DOIs:
10.1016/j.copbio.2016.11.018

Bibliographical note
This article is available under the terms of the Creative Commons Attribution License (CC BY). You may copy and distribute the article, create extracts, abstracts and new works from the article, alter and revise the article, text or data mine the article and otherwise reuse the article commercially (including reuse and/or resale of the article) without permission from Elsevier. You must give appropriate credit to the original work, together with a link to the formal publication through the relevant DOI and a link to the Creative Commons user license above. You must indicate if any changes are made but not in any way that suggests the licensor endorses you or your use of the work.

Permission is not required for this type of reuse.
Source: FindIt
Source-ID: 2355594758
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review