TY - JOUR
T1 - System-Level Sensitivity Analysis of SiNW-bioFET-Based Biosensing Using Lockin Amplification
AU - Patou, François
AU - Dimaki, Maria
AU - Kjærgaard, Claus
AU - Madsen, Jan
AU - Svendsen, Winnie Edith
PY - 2017
Y1 - 2017
N2 - Although Silicon Nanowire biological Field-Effect Transistors (SiNW-bioFETs) have steadily demonstrated their ability to detect biological markers at ultra-low concentration, they have not yet translated into routine diagnostics applications. One of the challenges inherent to the technology is that it requires an instrumentation capable of recovering ultra-low signal variations from sensors usually designed and operated in a highly-resistive configuration. Often overlooked, the SiNWbioFET/ instrument interactions are yet critical factors in determining overall system biodetection performances. Here, we carry out for the first time the system-level sensitivity analysis of a generic SiNW-bioFET model coupled to a custom-design instrument based on the lock-in amplifier. By investigating a large parametric space spanning over both sensor and instrumentation specifications, we demonstrate that systemwide investigations can be instrumental in identifying the design trade-offs that will ensure the lowest Limits-of-Detection. The generic character of our analytical model allows us to elaborate on the most general SiNW-bioFET/instrument interactions and their overall implications on detection performances. Our model can be adapted to better match specific sensor or instrument designs to either ensure that ultra-high sensitivity SiNW-bioFETs are coupled with an appropriately sensitive and noise-rejecting instrumentation, or to best tailor SiNW-bioFET design to the specifications of an existing instrument.
AB - Although Silicon Nanowire biological Field-Effect Transistors (SiNW-bioFETs) have steadily demonstrated their ability to detect biological markers at ultra-low concentration, they have not yet translated into routine diagnostics applications. One of the challenges inherent to the technology is that it requires an instrumentation capable of recovering ultra-low signal variations from sensors usually designed and operated in a highly-resistive configuration. Often overlooked, the SiNWbioFET/ instrument interactions are yet critical factors in determining overall system biodetection performances. Here, we carry out for the first time the system-level sensitivity analysis of a generic SiNW-bioFET model coupled to a custom-design instrument based on the lock-in amplifier. By investigating a large parametric space spanning over both sensor and instrumentation specifications, we demonstrate that systemwide investigations can be instrumental in identifying the design trade-offs that will ensure the lowest Limits-of-Detection. The generic character of our analytical model allows us to elaborate on the most general SiNW-bioFET/instrument interactions and their overall implications on detection performances. Our model can be adapted to better match specific sensor or instrument designs to either ensure that ultra-high sensitivity SiNW-bioFETs are coupled with an appropriately sensitive and noise-rejecting instrumentation, or to best tailor SiNW-bioFET design to the specifications of an existing instrument.
U2 - 10.1109/JSEN.2017.2742018
DO - 10.1109/JSEN.2017.2742018
M3 - Journal article
SN - 1530-437X
VL - 17
SP - 6295
EP - 6311
JO - I E E E Sensors Journal
JF - I E E E Sensors Journal
IS - 19
ER -