TY - JOUR
T1 - Synthetic Inertial Control of Wind Farm with BESS Based on Model Predictive Control
AU - Bao, Weiyu
AU - Wu, Qiuwei
AU - Ding, Lei
AU - Huang, Sheng
AU - Teng, Fei
AU - Terzija, Vladimir
PY - 2020
Y1 - 2020
N2 - Wind farms (WFs) can provide controlled inertia through synthetic inertial control (SIC) to support system frequency recovery after disturbances. This paper proposes a model predictive control (MPC) based SIC for a WF consisting of wind turbines (WTs) and a battery storage energy system (BESS). In the proposed MPC-SIC, the active power output of the WTs and BESS during the SIC are optimally coordinated in order to avoid over-deceleration of the WTs’ rotor, and minimize the loss of extracted wind energy during the SIC and degradation cost of the BESS. The IEEE 39 bus system with a WF consisting of 100 WTs and a BESS is used to validate the performance of the proposed MPC-SIC. Case studies show that, compared with the conventional SIC, the minimum rotor speed among all WTs with MPC-SIC can be improved by 0.08-0.11 p.u., the loss of captured wind energy of WF with MPC-SIC can be reduced by 12%-64% and the degradation cost of the BESS with MPC-SIC can be reduced by 72%-83%. The results proves that with the proposed MPC-SIC, the wind farm can avoid the over-deceleration of the WTs’ rotor and reduce the operation cost of the WF by improving the efficiency of wind energy usage and lifetime of the BESS.
AB - Wind farms (WFs) can provide controlled inertia through synthetic inertial control (SIC) to support system frequency recovery after disturbances. This paper proposes a model predictive control (MPC) based SIC for a WF consisting of wind turbines (WTs) and a battery storage energy system (BESS). In the proposed MPC-SIC, the active power output of the WTs and BESS during the SIC are optimally coordinated in order to avoid over-deceleration of the WTs’ rotor, and minimize the loss of extracted wind energy during the SIC and degradation cost of the BESS. The IEEE 39 bus system with a WF consisting of 100 WTs and a BESS is used to validate the performance of the proposed MPC-SIC. Case studies show that, compared with the conventional SIC, the minimum rotor speed among all WTs with MPC-SIC can be improved by 0.08-0.11 p.u., the loss of captured wind energy of WF with MPC-SIC can be reduced by 12%-64% and the degradation cost of the BESS with MPC-SIC can be reduced by 72%-83%. The results proves that with the proposed MPC-SIC, the wind farm can avoid the over-deceleration of the WTs’ rotor and reduce the operation cost of the WF by improving the efficiency of wind energy usage and lifetime of the BESS.
U2 - 10.1049/iet-rpg.2019.0885
DO - 10.1049/iet-rpg.2019.0885
M3 - Journal article
SN - 1752-1416
VL - 14
SP - 2447
EP - 2455
JO - I E T Renewable Power Generation
JF - I E T Renewable Power Generation
IS - 13
ER -