TY - JOUR
T1 - Synthetic approaches towards new polymer systems by the combination of living carbocationic and anionic polymerizations
AU - Feldthusen, Jesper
AU - Ivan, Bela
AU - Muller, Axel. H.E.
AU - Kops, Jørgen
PY - 1996
Y1 - 1996
N2 - This study summarizes recent efforts to obtain by combination of living carbocationic and anionic polymerizations block copolymers which are potential precursors for building new well-defined polymeric architectures with microphase separated morphology. Living carbocationic polymerization (LCCP) yields telechelic polyisobutylene (PIB) chains with a variety of useful endgroups, such as tert-chlorine, isopropenyl, primary hydroxyl, tolyl etc. When tolyl-ended PIB was used as precursor for macroinitiator of living anionic polymerization of 2-(tet-butyldimethylsilyloxy)ethyl methacrylate (tBuMe2SiOEMA), mixtures of homopolymers and block copolymers were formed due to incomplete lithiation of this chain end. In another approach a new functionalization method was developed by end-quenching living PIB chains with 1,1-diphenylethylene (DPE). In the presence of BCl3 a new telechelic PIB with 2,2-diphenylvinyl (DPV) endgroups was formed. A corresponding DPV model compound was synthesized from 2-chloro-2,4,4-trimethylpentane (TMPCl). Because of steric hindrance less than quantitative lithiation of this material occurred. Controlled deprotection of PtBuMe2SiOEMA obtained by living anionic polymerization (LAP) was utilized to prepare a precursor network composed of partially deprotected PtBuMe2SiOEMA and hydroxyl-telechelic PIB by using a diisocyanate crosslinker. After network formation deprotection with HCl was completed and a new amphiphilic network (APN) containing PIB and poly(2-hydroxyethyl) methacrylate) (PHEMA) segments crosslinked by urethane linkages was obtained.
AB - This study summarizes recent efforts to obtain by combination of living carbocationic and anionic polymerizations block copolymers which are potential precursors for building new well-defined polymeric architectures with microphase separated morphology. Living carbocationic polymerization (LCCP) yields telechelic polyisobutylene (PIB) chains with a variety of useful endgroups, such as tert-chlorine, isopropenyl, primary hydroxyl, tolyl etc. When tolyl-ended PIB was used as precursor for macroinitiator of living anionic polymerization of 2-(tet-butyldimethylsilyloxy)ethyl methacrylate (tBuMe2SiOEMA), mixtures of homopolymers and block copolymers were formed due to incomplete lithiation of this chain end. In another approach a new functionalization method was developed by end-quenching living PIB chains with 1,1-diphenylethylene (DPE). In the presence of BCl3 a new telechelic PIB with 2,2-diphenylvinyl (DPV) endgroups was formed. A corresponding DPV model compound was synthesized from 2-chloro-2,4,4-trimethylpentane (TMPCl). Because of steric hindrance less than quantitative lithiation of this material occurred. Controlled deprotection of PtBuMe2SiOEMA obtained by living anionic polymerization (LAP) was utilized to prepare a precursor network composed of partially deprotected PtBuMe2SiOEMA and hydroxyl-telechelic PIB by using a diisocyanate crosslinker. After network formation deprotection with HCl was completed and a new amphiphilic network (APN) containing PIB and poly(2-hydroxyethyl) methacrylate) (PHEMA) segments crosslinked by urethane linkages was obtained.
U2 - 10.1002/masy.19961070118
DO - 10.1002/masy.19961070118
M3 - Journal article
SN - 1022-1360
VL - 107
SP - 189
EP - 198
JO - Macromolecular Symposia
JF - Macromolecular Symposia
ER -