TY - JOUR
T1 - Synthesis of Nanoparticles Fully Made of Hemoglobin with Antioxidant Properties
T2 - A Step toward the Creation of Successful Oxygen Carriers
AU - Chen, Jiantao
AU - Jansman, Michelle Maria Theresia
AU - Liu, Xiaoli
AU - Hosta-Rigau, Leticia
N1 - Publisher Copyright:
© 2021 American Chemical Society.
PY - 2021
Y1 - 2021
N2 - Transfusion of donor red blood cells (RBCs) is a crucial and widely employed clinical procedure. However, important constraints of blood transfusions include the limited availability of blood, the need for typing and cross-matching due to the RBC membrane antigens, the limited storage lifetime, or the risk for disease transmission. Hence, a lot of effort has been devoted to develop RBC substitutes, which are free from the limitations of donor blood. Despite the potential, the creation of hemoglobin (Hb)-based oxygen carriers is still facing important challenges. To allow for proper tissue oxygenation, it is essential to develop carriers with high Hb loading since Hb comprises about 96% of the RBCs' dry weight. In this work, nanoparticles (NPs) fully made of Hb are prepared by the desolvation precipitation method. Several parameters are screened (i.e., Hb concentration, desolvation ratio, time, and sonication intensity) to finally obtain Hb-NPs with a diameter of ∼568 nm and a polydispersity index (PDI) of 0.2. A polydopamine (PDA) coating is adsorbed to prevent the disintegration of the resulting Hb/PDA-NPs. Due to the antioxidant character of PDA, the Hb/PDA-NPs are able to deplete two harmful reactive oxygen species, namely, the superoxide radical anion and hydrogen peroxide. Such antioxidant protection also translates into minimizing the oxidation of the entrapped Hb to nonfunctional methemoglobin (metHb). This is a crucial aspect since metHb conversion also results in inflammatory reactions and dysregulated vascular tone. Finally, yet importantly, the reported Hb/PDA-NPs are also both hemo- and biocompatible and preserve the reversible oxygen-binding and releasing properties of Hb.
AB - Transfusion of donor red blood cells (RBCs) is a crucial and widely employed clinical procedure. However, important constraints of blood transfusions include the limited availability of blood, the need for typing and cross-matching due to the RBC membrane antigens, the limited storage lifetime, or the risk for disease transmission. Hence, a lot of effort has been devoted to develop RBC substitutes, which are free from the limitations of donor blood. Despite the potential, the creation of hemoglobin (Hb)-based oxygen carriers is still facing important challenges. To allow for proper tissue oxygenation, it is essential to develop carriers with high Hb loading since Hb comprises about 96% of the RBCs' dry weight. In this work, nanoparticles (NPs) fully made of Hb are prepared by the desolvation precipitation method. Several parameters are screened (i.e., Hb concentration, desolvation ratio, time, and sonication intensity) to finally obtain Hb-NPs with a diameter of ∼568 nm and a polydispersity index (PDI) of 0.2. A polydopamine (PDA) coating is adsorbed to prevent the disintegration of the resulting Hb/PDA-NPs. Due to the antioxidant character of PDA, the Hb/PDA-NPs are able to deplete two harmful reactive oxygen species, namely, the superoxide radical anion and hydrogen peroxide. Such antioxidant protection also translates into minimizing the oxidation of the entrapped Hb to nonfunctional methemoglobin (metHb). This is a crucial aspect since metHb conversion also results in inflammatory reactions and dysregulated vascular tone. Finally, yet importantly, the reported Hb/PDA-NPs are also both hemo- and biocompatible and preserve the reversible oxygen-binding and releasing properties of Hb.
U2 - 10.1021/acs.langmuir.1c01855
DO - 10.1021/acs.langmuir.1c01855
M3 - Journal article
C2 - 34555900
AN - SCOPUS:85116552529
SN - 0743-7463
VL - 37
SP - 11561
EP - 11572
JO - Langmuir
JF - Langmuir
IS - 39
ER -